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ABSTRACT

(Distribution Limitation Statement A)

The objectives of this research were to determine the theoretical and experi-
mental load-deformation response and buckling loads of reticulated shells and
to study the growth of imperfections In reticulated shell models. Two types of
theoretical analyses (elastic material behavior was assumed) of reticulated
shells were conducted to predict load-deformation relationships. A "split
rigidit," concept was used in which equivalent membrane and pending thicknesses
were calculated. The second technique was a space frame analysis using the
NASTRAN computer code. Three spherical reticulated shell models (two brass and
one plastic) were fabricated and tested experimentally. Results of the study
indicated that the NASTRAN code predicted the deflection patterns well and
identified the final buckle locations. The assumption of elastic material
behavior precluded predicting the exact deflection magnitudes due to material
yielding. Buckling loads were closely predicted using a theory by Buchert.
This theory included the effects of large deflections and employed the split
rigidity approach. Plasticity reduction factors were applied to the predicted
results to account for material nonlinearities.
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CHAPTER I

INTRODUCTION

1.1 GENERAL

Recent trends in architectural and structural design have led

to widespread use of shell-type structures. Their aesthetic appeal

and the minimm requirement for internal supporting members has

popularized their use in sports stadia, auditoriums, shopping malls,

etc. Earlier shells and domes were primarily continuous structures

of reinforced concrete, with the material providing structural

strength and serving as covering for the structures.

More recently, however, certain advantages over continuous

shells and domes have been attained through the use of reticulated

shells. These structures are formed by approximating shell

surface with a framework of relatively short linear structural

members. A membrane-type covering is attached to provide thermal

and acoustic barriers and ror -r';tection against environmental

effects. The constLuccion problr.ms associated with scaffolding

and formwork ar thereby reduced or eliminated, and the aesthetic

and practical advantages of a variety of covering materials can be

incorporated into the design. Spurred by the popularity of this

type of structure and by several spectacular failures of dome-

type buildings, a demand has been created for improved analysis

and design techniques. The large sive of many of these

buildings has presented design problems entirely neu to structural

engineers. The preponderance of the theoretical work currently
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available in the liteiature has logically concentrated on continuous

shells. With the advent of the high-speed digital computer, however,

recent publications have presented structural analysis techniques and

buckling theories for reticulated domes. The necessary experimental

work on which to formulate and verify analytical techniques is,

vnfortunately, extremely limited. Many continuous shell theories

have been modified to the case of reticulated domes without an

adequate data base to justify their use.

The purpose of this paper was to study the load-deflection

relationships and buckling characteristics of several model

reticulated shells. The experimental data thus generated can

hopefully be used to investigate the adequacy of current theoretical

procedures.

1.2 PREVIOUS RESEARCH

1.2.1 Analytical Work. Analytical techniques using stiffness

and flexibility methods have been formulated in numerous recent

studies (1,2,3,4,5,6,7,8) of reticulated domes and other space frames.

Two of the more recent computer codes developed and in wide practical

use are NASTRAN (7 ) and FRAN (8 ). NASTRAN (acronym for NASA STructural

ANalysis) was developed during the advent of the space program under

the direction of the National Aeronautics and Space Administration. This

code employs the stiffness method of analysis and will allow linear

elastic analyses of space frameworks and numerous other structural

assemblies to be performed. Output consists of grid point displacements,

applied loads at grid points, forces at constrained grid points,

element forces, and element stresses. FRAN is also a linear elastic code for

AM
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complex structures. Numerous external loading conditions can be

applied and joint connection rigidities can bc varied. Structures

with up to 15,000 members and 2,000 joints can be analyzed.

Substructuring a large problem to aid in determining the stiffness

matrix inverse and to simplify the bookkeeping procedures is also

possible in FRAN.

Continuum analyses (9,10,11,12) of shells and domes were

formulated earlier. Only :ecently, however, have there been attempts

to modify these elastic continuum theories to the analysis and design

of reticulated domes. A paper by Wright (13) presented a shell

analogy in which member axial forces were related to shell membrane

forces. Elastic constants and effective thicknesses were given for

homogeneous isotropic and anisotropic continuous shells which were

equivalent to various reticulated shell grids. Equivalent meant

that wheit a reticulated shell was analyzed as a continuum, the

continuum elastic properties were assumed such that the load-

deformation behavior was very nearly that of the actual framework.

Wright (14) also presented a continuum analysis for double-layer space

frame shells. A double-layer shell consists of two reticulated shell

grids separated by an assemblage of members having a shear-carrying

capacity. The elastic constants of an anisotropic homogeneous

continuum possessing the same deformational characteristics were given.

Member forces were found from the stress resultants of the continuum.

Benard (15) studied the relationship between lattice (reticulated) and

continuous structures and included grid systems with both asymmetrical

and symmetrical patterns. Equilateral triangular, isosceles triangular,

~~--~2~!
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and square lattices were studied and their equivalent continuum

elastic constants were presented. The study included several direct

comparisons with Wright's work. Mitchell (16) presented a shell

analogy for a framed dome and made comparisons with a relaxation

solution. The Dome of Discovery in Britain was studied as a model.

Lane (17) compared a truss solution, Wrght's method, and a diamond-

element method to determine bar forces in a trianon network. He

found that the finer the network, the better the agreement between

-he truss solution and the shell analogy. Others (18,19) have made

similar studies.

Buckling theories as applied to reticulated frameworks have been

developed primarily within the past decade. Buchert (20) has

reported experimental results on a series of stiffened plastic shells

to substantiate his theoretical development. The test shells

consisted of a continuous plastic outer shell fastened to an inner

"stiffening" shell having a reticulated member pattern. The theory

was developed by calculating the deflections during loading and prior

to buckling using a large deflection stability approach. The tests

agreed well with the theory and confirmed that the shell edges could

be stiffened and relatively high buckling loads obtained by increasing

the meridional curvature near the edge of the shell. Buchert (21) also

developed general buckling equations for doubly curved latticed

structures. Expressions for the effect of edge conditions,

deviatiLns from a perfect sphere, and material yield strength were

discussed. Lind (22) did extensive work on local buckling and snap-

through instability for regular triangulated single layer domes.



5

Buchert(23) derived plasticity reduction factors and conducted

model tests to verify his buckling theories which included the

effects of plasticity and large deflections. McCutcheon and

Dickie (24) used energy considerations to develop buckling criteria

for large dome frameworks. Experimental investigations were conducted

using a portion of a dome. Tezcan and Ovunc (25) used an iteration

procedure to determine buckling loads of space structures and

accounted for nonlinear behavior. The matrix approach was used with

the addition of considering geometry changes. Wright (13)

formulated criteria for the buckling ot individual members and a

criteria was proposed for snap-through buckling. A criteria was

proposed for overall instability of reticulated shells based upon

the use of equivalent continuum thicknesses and elastic constants.

The Bucharest Dome collapse was predicted and estimates of buckling

loads for other large reticulated structures were given.

1.2.2 Experimental Studies. In addition to the experimental

work meutioned above, other investigators (26,27,28,29,30) have

performed much needed experimental studies. Makowski al1d Pippard (27)

performed experiments on a braced (reticulated) dome similar to the

Dome of Discovery. Models of 1/8-inch diameter steel wire were built

and Maxwell's Reciprocal Theorem was used to calculate displacements.

The experimental results compared well with the theoretical

predictions. Bayley (29) reported experimental work on a model dome

wita a three-way framing system, and compared the results with

theoretical predictions. A 1/15th scale of a 143-foot diameter

prototype was investigated. Uniform, half-uniform, and apex loading
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cases were investigated. The effect of introducing limited joint

and support rigidity was discussed. Litle (30) documented work on

the methods and problems of model testing and studied the use of

model testing in the design of full-scale structures.

1.3 OBJECT AND SCOPE

An examination of the above literature revealgd a lack of

theoretical and experimental information on the load-deformation

relationships of a reticulated dome from initial loading to the

final buckled config(ration. Also, several theories were postulated

that reticulated shells can be analyzed, designed, and will behave

as continuous domes. The lack of an adequate experimental data base

to check these theories and to identify the causes if buckling in

a reticulated dome th-m initiated this study.

Two theoretical analyses to predict the load-deflection

re0;ponse of reticulated shells were employed, namely the split

rigidity approach and the NASTRAN stiffness method. These analyses

were based on the assumption of linear elastic material behavior.

The NASTRAN predictions, however, included the effects of geometric

nonlinearities. An experimental program to check these predictions

was performed. Three model spherical reticulated domes were

fabricated, one of plastic and two of brass. Hydrostatic water

pressure loading was applied and radial deflections under each were

measured using a highly accurate sensing device. The models were

incrementally loaded to their :espective buckling loads, and the

buckling load was compared with the predictions of several current

buckling theories. A least-squares curve-fitting technique was
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developed to reduce the experimental deflection data. Detailed

comparisons between theoretical and experimental deflections were

made by comparing contour plots of the deflected shape and by

comparing deflections along selected reference lines through the

location of the final buckle. No stress or strain measurements were

made on the models to check stresses.

I

-V
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CHAPTER II

THEORY AND ANALYSIS

The theoretical approach to the objectives of this study was

a two-pronged effort: 1) to predict the deflections of a spherical

reticulated shell as it defomed under load, and 2) to use these

deflections to predict the buckling load of the shell. Two types of

deflection analyses, the split rigidity approach and a conventional

space frame aualysis, are described in this section. A detailed

theoretical development of each of these theories is presented in the

appendices. A summary of these theories together with their appli-

cation to several experimental shell models is given here. Buckling

theories of reticulated shells are then presented and applied to the

test models.

2.1 THE SPLIT RIGIDITY METHOD

2.1.1 Theory. A relatively new approach to predicting the

deflections of reticulated shells has been the split rigidity

technique. (20) This concept introduced the idea of an equivalent

continuum membrane thickness t to account for membrane action in them

shell, and an equivalent continuum bending thickness tb to represent

bending behavior. By considering different rigidities for membrane

and bending action, this "split rigidity" theory took advantage of the

available and relatively simple closed-form shell equations, provided

the following basic assumptions wer- met:

a - . - -a -- - .k ~ --.-.....--
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(1) The shell material behaved in a linear elastic manner.

(2) The member grid pattern was a relatively uniform square

grid such that single constant equivalent thicknesses could be

established in both membrane and bending behavior. For this particular

study, the theory was also restricted to a spherical reticulated shell

subjected to a uniform radial load.

Upon writing three basic equilibrium equations for the spherical

shell element ini Figure 2.1 and making appropriate substitutions for

thP forces and moments therein, the problem was reduced to the

solution of two ordinary differential equations:

d - Et V 2.1
#q m

R2Q
d2V 2.2

where Q = the meridional shear force

E = Young's modulus for the material

V = the angle of rotation of a tangent to a meridian

R = the spherical shell radius.

The flexural rigidity quantity Db was defined as

Etb
D b 2.3
b 12(l-v)

where V is Poisson's Ratio. Equations 2.1 to 2.3 provided for both

bending and membrane behavior, thus originating the term "split

rigidity."
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R

Figure 2.1 Free-Body Diagram of a Shell Element



By elim-5iiating Qfrom the above eqiuations a singje fourt h

ord.i: differr!zial equation resulted.

d4V 4.

V0

(31)Equation 2.4~ is known as the Ceckeler equation whin E: t' L.m o,

After solving this equation, expressions f~or the force!s N,

N Q and the bending moments M. and 1I a were obtained. These intern~al

forces were the auantitices required to determine the deflection u,

normal Lc the shell surf ace (see Pig--ure 2 .2). The deflection w was

Lhe final objective for this analytic approach, and due to bending

effects alone was

W PC e-ICCIsin(Kx + Y 371 .* Wb 72- K-e si4+-~ .

Figure 2.2 Displace~ment of a Point
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where the constant C and the phase angle y were to be determined

from boundary conditions.

The first boundary condition for deflection compatibility at

the edge beam (also called the shell springing) gave

Ne r cos s  v

-2K2 [ + N- s  A I

Cm s A m 2.6
3 r 0t W

E [v2 K sin (y- + sin -;,7)

where A b was the edge beam cross-sectional area and the subscript

"s" referred to the subscripted quantities evaluated at the shell

springing. By enforcing rotation compatibility at the edge beam a

second boundary condition resulted.

C sin y = N (-a cOs + b sins
cos + b s)

2.7

+ rb[- sin (y ) + i(

where VT was the rotational flexibility of the edge beam. Other

geometric quantities in the above equation are shown in Figure 2.3.

Therefore, simultaneous solution of Equations 2.6 and 2.7 for

C and y produced the desired normal deflection w which includes both

bending and membrane action:

RC -Ka3SEt N] -- e  sin (Ka + y- ) 2.8
Etm 6 2K4
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Figure 2.3 Compatibility Restoring Forces

Only a sunimary of the split rigidity approach to the prediction

of deflections has been presented here. A complete development of the

theory is given in Appendix A.

2.1.2 Test Model_Analysis. Application of the split rigidity

approach was made to three model reticulated domes. A surmary of the

models and their geometries is presented in Table 2.1. Full details

TABLE 2.1

Model Grid Spacing Material Member Cross--Section

B2 2" Brass H

Bl i" Brass H

PRET 2" Plastic Rectangular

of the models and their fabrication are given in Chapter 3, and

pertinent dimensions and other quantities necessary to solve Equation

2.8 are extracted therefrom. The analysis of each model follows.

I
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Model B2. Brass members with the dimersions shoun in Figure 2.4

.125 ilk

'.024i 1.

.024 hk -- w

XX .125in

.024in

y A
Figure 2.4 Cross-Section of Brass H-Section

were used in this model. The member properties were:

Area = A = .00785 in
2

Ixx = .0000165 in
4

Iyy .0000079 in4

A solid circular brass edge ring having a quarter-inch diameter cross-

section provided the following properties:

Area = .04909

I = .0001917

Young's modulus for the brass material was found to be 10 x 106 psi

(see part 4.1). A Poisson's Ratio of 0.33 was assumed. The B2 model

radius (determined from a fit to experimental data as described in

part 3.5) was 16.17 inches, and an opening angle of 470 was used.
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This opening angle, designated s , was the angle between che vertical

axis of the shell and a line from the sphere center to the shell

springing, as shown later in Figure A.5. Using these kncwn quantities

it was found that K = 13.28 and Db = 82.51 lb-in. Roark 3 2  gave the

edge beam rotational flexibility as R2/EI, or .136 rad/lb for the B2

model. For a square grid approximation the membrane thickness t was

equal to A/d where d was the member spacing, and the bending thickness

tb was given by

tb = 3 121(1d- v2) 2.9

Thus t = .00393 inches and t = 0445 inches. Solving Equations 2.6
m b

and 2.7 simultaneously for y and C gave 360 and -.00404 p,

respectively. Here p was the external uniform pressure load applied

radially. The final expression for combined membrane and bending

deflections for the B2 model was therefore

w = -.00348pe -Ka sin (Ka - 810) - .00223 p 2.10

The deflection was taken to be positive for an outward movement.

The pressure p wa4 a positive quantity.

Bl Model. Corresponding quantities were computed for the Bi

test model. The same member cross-section and edge ring were used.

In this case R = 16.40 inches, K = 13.39, Db = 164.4 lb-in, V =

.1403 rad/lb, tm = .00785 inches, and tb = .0560 incbe. From the

boundary condition equations, y = 370 and C = -.00235 p. The

combined membrane and bending deflection equation for the Bl model

was



16

w -.00204 peKa sin (Kc - 820) - .00115 p 2.11

PRET Model. The plastic reticulated model shell had members

whose cross section averaged .214 inches in depth and one-half inch

in width. This gave section properties of A = .107 in2 and I =

.000406 in . The edge beam condition for the FRET model is illustrated

in Figure 2.5. Due to this geometry a very flexible edge beam was

assumed, meaning y = n/4. Young's modulus for the plastic material

was measured to be 187,000 psi, and a Poisson's Ratio of 0.30 was

assumed. The FRET model radius was 15.60 inches, and its opening

angle was 50.60. The edge beam area was taken as .113 in2. Thus

K = 11.22, t - .0534 inches, t = 1307 inches, giving C = -.0403 pmb

from Equation 2.5. For the FRET model the split rigidity equation for

the deflection w was

w = -.0396 pe sin (Ka -';) - .00853 p 2.12

PRESSURE VESSEL
CLAMPING RING

ASSUMED PIN JOINT

ASSUMED OUTER LIMIT
OF SHELL MATERIAL

Figure 2.5 PRET Model Edge Ring Geometry
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The split rigidity equations given here are plotted in part

4.3 against experimental results.

2.2 ANALYSIS BY THE STIFFNESS METHOD

2.2.1 General. In addition to the split rigidity analysis

just described, a conventional space frame analysis was conducted

using the NASTRAN (7) (acronym for NASA STRuctural ANalysis) computer

code. Using the stiffness method a series of calculations was

conducted for static incremental loadings foz two of the three test

shell models. The coordinate systems, grid point selection, members

and their cross-sectional and material properties, loads, and the

boundary conditions assumed in the NASTRAN analyses are described in

the following section.

The assumption of linear elastic material behavior was made in

the analyses described here. An accurate prediction of any potential

plastic behavior was therefore not expected either in this type of

analysis or in the previously described split rigidity technique.

Prediction of any nonlinear behavior due to geometric imperfections

was the objective of the NASTRAN analyses. It should be noted tf

no NASTRAN analyses were conducted for the Bl test model. Since

experimental instrumentation was not provided at each joint, the exact

determination of all the necessary joint coordinates was not possible

for this model.

2.2.2 The B2 Model. A full description of the B2 model and

its fabrication is presented in part 3.2.1. This model was constructed

of curved brass H-sections in a grid pattern intended to simulate a

two-inch spacing of the members in both the circumferential and

A A
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meridional directions. A solid quarter-inch diameter brass edge ring

provided support at its base.

Coordinate Systems. The origin of both coordinate systems

employed was located at the center of the spherical test model, as

shown in Figure 2.6. The "basic" coordinate system (using NASTRAN

terminology) was rectangular, while the "local" system was defined in

spherical coordinates to take advantage of the shell geometry.

Grid Point Selection. The location of member joints was

denoted by specifying the experimental radius and the design meridional

and circumferential angles with respect to the local coordinate

system. Since the edge ring itself was not instrumented radially,

joint locations around its circumference were determined by linear

extrapolation of the radial values of gage points located one and two

inches meridionally from the desired location.

The grid used in the analysis is shown in Figure 2.7. This

grid appears as it wou..d if viewed from the shell center. The members

in the actual model of Figure 4.6 not appearing in the analysis grid

were assumed to provide load transfer only, with negligible contri-

bution to the structural stiffness. Joint locations of these members

were not all instrumented, so their true radial locations were not

known.

Incidentally, a sublety of the NASTRAN code required locating

the crown joint .001 degrees both meridionally and circumferentially

from the vertical axis of Lhe coordinate system. Ambiguities in

vector definitions would result if this procedure were not followed.
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z

p DIRECTION

0 DIRECTION

SDIRECTION

LOCAL SYSTEM: (p,0,0)

BASIC SYSTEM: (x,y~z) N

Figure 2.6 Coordinate Systems
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Figure 2.7 B2 Model Theoretical Grid
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Bar Elements and Member Properties. The brass H-sections used

in the model were assumed to be straight members between the joint

locations. The member properties were given previously in part 2.1.2.

Material Properties. Based on results of the tensile tests

as described in 3.6.1 and 4.1.1, the elastic modulus for the brass

material was taken as 10 x 106 psi. A Poisson's Ratio of 0.33 was

assumed.

Loads. An option for applying a pressure distribution along a

bar member was not available in NASTRAN. A series of radial point

loads applied to each joint was therefore assumed. vor most joints

the loads were calculated as follows. The surface area for the circular

segment lying between two parallel circles was computed as

AREA = 27r (cos T - cosB) R2  2.13

These parallel circles were located on either side of a circular ring

of joints and midway meridionally to the adjoining ring of joints.

This area was then multiplied by the external pressure and divided by

the number of joints around a ring, or,

Fi = -- (cos T - cosB) R2  2.14

where

F = point load applied to joint ii

P = external pressure load

N number of joints around a ring

IT, B = meridional angles bounding the segment above

and below, respectively
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R = "best-fit" radius of experimental data. R for

the B2 model was 16.17 inches.

For the crown joint and the five adjoining joints, the

contributing load was proportioned as follows. One-third of the load

between the crown and the adjoining parallel circle of joints was

applied at the crown. The remainder of the load was distributed

equally to the remaining five joints.

Boundary Conditions. The boundary conditions for the B2 model

required setting the vertical displacement of the edge ring to zero.

This was accomplished in NASTRAN by applying the following constraint:

wcos s - vsin~s = 0 2.15

where *s was the shell opening angle. Here w was the radial and v the

meridional displacements. To prevent rigid body displacement the

crown joint was restrained against horizontal displacement, and one

edge ring joint was restrained circumferentially to avoid rigid body

rotation.

2.2.3 The PRET Test Model. The fabrication of the PRET

model is detailed in part 3.2.2. It was designed as a spherical

reticulated shell having quarter-inch thick members of a plastic

material, with a two-inch grid spacing. The model was constrained

at its base by clamping it at the pressure vessel edge.

Coordinate Systems. As in the B2 model analyses the origins

of both the local and basic coordinate systems were located at the

sphere center.

Grid Point Selection. Joint coordinates were specified by the

radial distance from the spherical center (as determined by a

-. ----.- k ~ ____________________________________
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"best-fit" to the experimental data) and by the design values for

meridional and circumferential angles. Locations of joints outside

the range of the measuring device were extrapolated with a curve

through the measurable data on the same parallel cizle.

The analysis grid for the PRET model is given in Figure 2.8,

and duplicates that of the actual model. The view is from the

spherical center. The crown node was located slightiy off-center,

again to prevent ambiguous geometric definitions in NASTRAN.

Bar Elements and Member Properties. Straight members were

assumed for the PRET analyses. Member properties for the model were

determined from individual thickness measurements taken on each member.

The thicknesses varied because of the vacuum-forming method of

fabrication and ranged from typical values of .22 to .25 inches near

the springing to .19 to .20 inches near the crown.

Material Properties. Based on results of the material property

tests described in parts 3.6.2 and 4.1.1, an elastic modulus of

187,000 psi was used in the analyses. Poisson's Ratio was taken as

0.30 for the plastic material.

Loads. Radial point loads were assumed acting at each member

joint and were calculated in a manner identical to that for the B2

model. Note, however, that the first parallel circle of joints

next to the PRET model crown contained six rather than five joints

among which the load was equally divided.

Boundary Conditions. The existing edge ring geometry of the

PRET model was shown previously in Figure 2.5. The shaded areas

represent circumferential members seen when cutting a meridional
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Fla'ure 7.8 PRET Model Theoretical Grid
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section through the shell between two weridional members. Joints

located on the edge ring were assumed to be free to rotate in any

direction but displacements were prevented. The edge ring was

therefore taken as a regular size member with the actual model

material outside this member ignored. This assumption was deemed

reasonable considering the low bending stiffness of the quarter-inch

plastic material protruding from the pressure vessel clamping ring.

To prevent rigid body motion in the PRET analyses, the crown

joint was constrained horizontally and an edge ring joint was

constrained circumferentially.

2.3 RETICULATED SHELL BUCKLING

When designing a reticulated shell several types of buckling

must be considere&d General buckling over a large portion of the

shell is a prime consideration. Local snap-through buckling, when

a joint is. loaded and deflects through such that the local curvature

is reversed, can also occur. The possibility of member column buckling

between Joints must also be examined.

In the following section each of the above buckling types was

investigated. Appropriate theories are presented and then are

applied to the experimental models previously described.

2.3.1 Buckling Theories. Two different theories for general

buckling are given here. The effects of live load deflections we-e

included in Buchert's theory (20) , while material and member properties

only were considered for Von Kprman-type buckling0
3 , 34, 35)

General Buckling (Buchert). Buchert (20 ) developed a general

buckling theory by calculating deflections during loading and prior

4Lp
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to buckling and using a large deflection stability approach. Equation

2.4, the differential equation for secondary edge effects, formed the

basis of this theory.

By maximizing the deflection predicted by Equation 2.8 and

considering a simply supported edge, the result was

RCe-3u/4

WM = -- 2K Et (Ne -m
Buchert presented the results of this theory in the following

fGrm. Let A = IWIMAX. For small deflections, or for A/tm<< 1

2Et 2  tb 3/2 Am _

PcrE = -i' [0.41 () - 0.81 - 2.17
m m

If A/t was not much less than 1.0, or for large deflections, the

following expression was used:

2Et 2 A A{ 0 . 4 2 a-0 T 3
PcrE  m {-0.54a- -0.145 9 +

m F.M m
2.18

+1.0 A 3.0 t b)3

tm -0.03 .9t + 3. 8 -) + 0.359(-) }
m m m m m

Linear elastic material behavior was assumed in the above

equation, as noted by the subscript E. Buchert (2 3 ) derived plasticity

reduction factors for this equation in the event inelastic material

response was anticipated. In that case the plastic buckling pressure

was given by

Pcr = nPcr
p E 2 .19a

where

~~~~~1
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E

= (E + ) 2.19b
4E t .3

In this expression,

E = the secant modulus, ands

E = the tangent modulus associated with the maximum membrane

stress.

General Buckling (Von Karman). Von Karman-type buckling
(3 3 )

when incorporated with the concept of split rigidities (34 ) was

expressed as

t t
PcrE CE ( M)2 (;t3/2 2.20E

m

Wright(1 3 ) recommended a value for the constant C of 0.38, while

Buchert(3 5) found C to be 0.365. (These values of C do not include a

safety factor.)

Local Snap Buckling. Crooker and Buchert(3 6) have given the

criteria for local snap-through buckling as follows:

If

R2 .10 2.21

then the local snap buckling can occur. In the above, L is the member

length. Wright (1 3 ) gave the criteria for local buckling as:

If

R2 < .092 2.22

then buckling would occur for inextensible supports, and if

,j < .132 2.23

then buckling would occur for extensible supports.
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Euler Column Buckling. For a uniform radial pressure p, the

membrane forces were pR/2 throughout the shell. The member forces,

assuming a square grid with straight members, were thus equal to pRL/2.

Using the Euler column buckling load the critical pressure p cr was

_2rr
2EI

PcrE = 2L- 2.24

Even with rigid joints the possibility of antisymmetrical buckling

existed; thus the straightforward Euler load was used.

2.3.2 Application to Experimental Models. Each of the

previous buckling equations was applied to the prediction of the

buckling load for the experimental shell models. The following is

a summary of these predictions.

The B2 Model. The general buckling formula derived by Buchert

(Equation 2.18) was expressed in the following form

2Et 2

PcrE - • F 2.25

where

F = 0.54 -- 0.145 . 9()2 + 3.08(

+ .09 -_.03 - .9 + 3 .08( + b)3

m m " m m m

From the previously defined properties of the B2 model, tb/tm

.0445/.00393 = 11.3, R = 16.17 inches and E = 10 x 106 psi. A non-

dimensional plot of the factor F versus the deflection term A/tm is

sbown in Figure 2.9. This family of curves demonstraited the sensitivity
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Figure 2.9 B2 Model: Equation 2.26
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of the buckling load to live load deflections and to variations in

the shell stiffness properties. Therefore, to determine the buckling

load an estimate of the maximum live load deflection was required.

Three possibilities for this estimate were immediately obvious. The

first was to use the value for maximum combined bending and membrane

deflections given by the split rigidity approach (Equation 2.16). By

iterating between Equations 2.16 and 2.26, a value of P equal tocr

11.3 was found. Note that linear elastic material behavior was

assumed in both the deflection and the buckling equations above. A

second approach was to use the maximum deflection predicted from a

standard space frame analysis approach like NASTRAN. This method also

assumed linear elastic material behavior but had the advantage of

accounting for geometric imperfections in the shell. Since the B2

shell model was tested experimentally, the third alternative was to

use the maximum deflection measured during the test. Results of the

latter two approaches are presented later in Chapter 4.

As applied to the prediction of general buckling of the B2

model, the Von Karman approach (Equation 2.20) gave P 8.2 psi.
cr

Linear elastic material behavior was assumed here also.

For protection against local snap-through buckling, Equation

2.21 by Buchert required that rgR/L2 be greater than .10 for the B2

model. For this model the quantity was .185, thus satisfying the

criteria.

Finally, the Euler column buckling formula gave P 50.4 psi.
cr

This was considerably higher than the other predicted critical loads,

so column buckling was not expected for the B2 model.

~. . . .. . . o . i I I I I i I i , i,1 I I |
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The Bi Model. Buchert's general buckling formula is plutted

in Figure 2.10. For this model tb/tm = .0560/.00785 = 7.13 and

R = 16.40 inches. When the split rigidity equations were used t.

estimate the maximum deflection A for the shell, the predicted bucklinE"

load was 22.1 psi. Results of this method using the measured experi-

mental deflection from the Bl model test appear later.

The Von Karman approach as applied to the Bl model gave

P = 15.9 psi.
cr

For protection against local snap buckling, the Bl model

provided a value of r R/L2 = .75 which exceeded the required .10.

For column buckling the critical Euler external pressure

load for the Bl model was 199 psi, which was definitely on the safe

side.

The PRET Model. Figure 2.11 represents the Buchert formula

for general buckling of the PRET model. In this case, t b/t =

.1307/.534 = 2.45, E = 187,000 psi, and R = 15.60 inches. Using

the split rigidity approach to predict the maximum deflection A,

the critical buckling pressure was predicted to be 4.0 psi. This and

other techniques to predict the maximum deflection A for use in

buckling predictions are considered in Chapter 4.

An estimate of the critical buckling pressure by the Von Karman

method gave a value of 3.4 psi.

For snap buckling, the PRET model had a value of r R/L2 of .24
g

which exceeded the required .10.

The Euler column buckling pressure was estimated at 24.0 psi.
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CHAPTER III

EXPERIMENTAL PROCEDURES

3.1 GENERAL

In order to meet the stated objectives of part 1.3 an

experimental program was developed. The procedure consisted of

fabricating three spherical shell models, two of brass and one of

plastic. These models were loadea with a uniform hydrostatic water

pressure in a series of static pressure increments. At each pressure

the radial displacement at points of instrumentation was

measured and recorded. Loading continued until buckling occurred.

The types of models and the materials used In their fabrication

were based on the following criteria. A spherical shape was selected

and a square grid approximation was employed to enhance ease of

fabrication. Member spacing was determined by placing the first

circumferential member above the edge ring near the point of inflection

of the theoretical bending deflection curve. This criteria applied

to the two models having a two-inch grid spacing. One of the brass

models was fabricated on a one-inch grid spacing to attempt to

identify differences in the behavior of a coarse versus a fine mesh.

The brass material was chosen because of its ready availability

in common shapes in the desired size. Brass also provided relatively

well-defined elastic properties. The plastic material was chosen for

its extreme ease of fabrication. Thi3 material was on hand at the

Shell Structures Laboratory at the University of Missouri, as was the

vacuum-forming apparatus necessary to give the model its initial



35

spherical shape. The effects of creep in the plastic material were

recognized. It was felt, however, that the objectives of the study

could be met in spite of the creep phenomena.

3.2 FABRICATION OF THE MODELS

3.2.1 Brass. Considering the above criteria, computations

indicated that a brass H-section having the dimensions shown

previously in Figure 2.4 would meet the desired design requirements.

To begin fabrication of the first brass model a pattern mold was

selected and the desired two-inch square grid was scribed thereon

(see Figure 3.1). A mechanical guide was then assembled to conform

the sections to the spherical shape of the mold as shown in Figure

3.2. The principal axes of the member were oriented parallel and

normal to radial lines at each point on the sphere.

Continuous circumferential rings were assembled first, and

meridional members were then added. Flanges at the ends of each

member were trimmed (see Figure 3.3) to provide a tongue-in-groove

joint at member intersections. Joints were initially connected

using a soft-solder technique as in Figure 3.4. A high-quality

silver solder was then applied to provide a secure connection at each

joint. Addition of the edge ring (Figure 3.5) completed the model,

several views of which appear in Figure . This first brass

model, designed to simulate a two-inch square grid spacing, is here-

after referred to as the B2 test model.
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Figure 3.6 (cont.) Completed B? Test Model
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Following completion of the B2 model, it was instrumented for

testing. Instrumentation consisted of soft-soldering spherical gage

points (steel balls i/32 inches in diameter) at locations around the

shell where it was desired to know the deflections. Typical locations

of gage points were at member intersections, and at half-inch

intervals aloL-g meridional lines near the edge ring to monitor

anticipated bending behavior. Data was not taken on the movement of

the brass model edge ring due to its recessed position in the test

device described later in part 3.3.1. For the brass models a total

of 251 locations on the shell were instrumented.

After testing the B2 model to its buckling load, it was

straightened and members were added to it to provide a subsequent

test model. This second brass model, designated Bl, was designed

to simulate a one-inch square grid spacing of members. Fabrication

procedures duplicated those of the B2 model. The BI model is shown

in Figure 3.7.

The difficulties encountered in cutting, milling, and soldering

the brass models were considerable. Tolerances were very close due

simply to the small size of the members. The silver-soldering

technique was particularly difficult. Temperatures near 11000 F

were required to flow the solder and bond the joints properly.

Temperatures of this magnitude were sufficient to alter the physical

properties of the material as evidenced by a lower yield stress in

the tensile test results of part 4.1.1. These temperatures naturally

caused significant expansion and contraction during fabrication,

resulting in severe difficulties in holding tolerances and likely
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Figure 3.7 Completed B1 Test Model

-. 3L



42

producing a highly variable residual stress pattern throughout the

model. The initial imperfection patterns presented in part 4.1

reflect these difficulties.

3.2.2 Plastic. A plastic test model was fabricated as part

of the experimental program and is referred to as the PRET model.

A two-inch square grid was to be simulated. Member size was chosen

to be one-quarter inch in depth with a one-half incn width.

To fabricate the PRET model, a quarter-inch thick rectangular

sheet of Boltaran 6100 was used. This plastic sheet was vacuum-

formed to the desired spherical shape using the apparatus shown in

Figure 3.8. This apparatus utilized an overhead heating device to

soften the material, which was then lowered over a spherical mold

and a vacuum applied to draw the plastic downward into the mold

(see Figure 3.9). The resulting continuous plastic shell was scribed

and the desired grid pattern cut out using an electric Jigsaw as

shown in Figure 3.10. The edge ring area was then trimmed to permit

clamping into the test pressure vessel described in part 3.3.1.

Thickness measurements were taken of each member at this time for use

in theoretical calculations.

The completed PRET model is shown in Figure 3.11. Fabrication

in this manner was significantly easier and faster than the

meticulous procedures required for the brass models.

The spherical gage poinits for PRET were mounted using a quick-dry

hobby cement. A total of 233 locations were instrumented.

3.3 TESTING APPARATUS AND TEST SETUP

3.3.1 Pressure Vessel. Following the fabrication of each



Figure 3. 8 VaccuumForming Device

Figure 3.9 M1olded PRET Model
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Figure 3.10 Cutting the PRET Model
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Figure 3.11 Completed PRET Test Model
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model it was tested by application of incremental static loads. The

loading device utilized is shown in Figure 3.12 and was simply a

pressure vessel capable of applying hydrostatic water pressure loads

to a test model mounted on its upper edge ring support. The water

pressure source was the local water supply system.

In order to apply a pressure to a reticulated test model, it

was necessary to seal the surface of the structure. This was done

by forming a plastic membrane to the desired spherical shape as

illustrated in Figure 3.13. The membrane-stretching device shown

in the figure was developed as part of a test program on epoxy-resin

shell construction at the University of Missouri Shell Structures

Laboratory. For this study a double thickness of four-millimeter

clear plastic membrane was placed across the supporting table and a

steel ring with an appropriate seal was clamped atop the membrane.

Air pressure was applied beneath the double membrane and an alternating

procedure of pressurization and self-relaxation of the miembrane was

continued until the membrane held its desired shape without internal

pressure. Shaping of the membrane was required to avoid wrinkling

and subsequent uneven application of the pressure vessel load.

After shaping the membrane, it was inverted and placed in

the pressure vessel with a silicone rubber seal heneath its outer

edge. As observed in Figure 3.14 an inverted test model was then

placed in the test apparatus and an edge ring support for the model

was bolted to the upper surface of the pressure vessel. The pressure

vessel bowl was then filled with water, and the trapped air beneath
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Figure 3.14 Mounting a Test Mklodel
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the membrane was vented through 
the rubber seal.

A double valve assembly controlled water flow into the

pressure vessel. The upstream valve damped any line surge and the

downstream valve stabilized the water pressure at the desired level.

3.3.2 Easterby Apparatus. The objectives of this study

required a highly accurate determination of the position and the

movement of each experimental gage point on the test models. A test

device for this purpose had been developed and utilized by Mr. Stewart

Easterby, previously a graduate student at the University of Missouri

at Columbia. The original device was modified slightly for the current

study and is shown in Figure 3.15. It consisted basically of a tripod

support bolted atop the pressure vessel with a sensing radial arm to

measure gage point position.

The radial arm assembly appearing in Figure 3.16 was composed

of two basic parts. The upper part of the arm was fastened to a

spherical pivot at the top of the tripod support. This pivot

permitted 360-degree rotation of the arm in a horizontal plane with

a near 50-degree arc in a vertical plane. The center portion of the

arm consisted of a ounting tube containing a linear differential

transformer. This transformer was powered by direct current, and for

brevity will be referred to hereafter as a DCDT (Direct Current

Digital Transformer) device.

3.3.3 DCDT Device. The DCDT device was capable of a one-half

inch core travel and could sense a movement as small as .0001 inches.

At the lower end of the radial arm was a spherical seat fastened to

the DCDT core. A spring-loaded trigger was attached thereon to permit

............ !
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lifting the seating tip while moving the device from one gage point

to another. This latter assembly appears in Figure 3.17.

After attaching the radial arm to the tripod support, the

assembled Easterby apparatus was bolted to the pressure vessel as

shown in Figure 3.18. Independent measurement of potential movement

of the top ring of the pressure vessel and the mounting for the radial

arm pivot demonstrated that the spherical pivot behaved as a fixed

reference point for gage point measurements.

3.3.4 Pressure Measurement. Two independent measurements of

the applied pressure were taken during test loadings. These devices

appear in Figure 3.19. An approximate pressure read-out was obtained

from the standard pressure gage mounted on the side of the pressure

vessel. A more accurate reading was taken using a mercury-filled

manometer inclined at an angle and calibrated to provide an easily

and accurately read meniscus.

It is noted from the pressure vessel setup that a differential

pressure existed between the top and the bottom of the shell test

specimen, which was due simply to the weight of the water. The

reference level on the test specimen was taken at its mid-height, and

the pressure readings were correctea accordingly. Due to the volume

of water displaced by the test model itself, an equivalent initial

radial pressure of .15 psi was deemed acting on the model. This small

initial load is included in all pressure readings cited in this study.

3.4 TEST PROCEDURE

The test apparatus was prepared for testing by first filling the

pressure vessel completely with water and venting the trapped air.
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Figure 3.19 Pressure-measuring Devices

- 3|
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The plastic loading membrane was then sealed and the shell was thus

under its initial equivalent preload of .15 psi, as read from the

pressure manometer.

An initial set of radial measurements was then taken. Data

was recorded semi-automatically using the test set-uo shown in Figure

3.20. The signal from the DCDT device was passed directly to a

digital voltmeter. After digitizing, the signal was transferred to a

modified key punch and recorded on cards. An interface device on the

key punch permitted the voltmeter signal to be recorded directly by

the key punch by simply pressing a recording button. Data on a

typical card included the test model designation, pressure level,

gage point number, and three samplings of DCDT data from each gage

point. The DCDT device was re-seated on the gage point for each

sampling. A reference rigidly attached to the pressure vessel was

also sampled to permit later correction of the data for drift of the

electronic apparatus. This point was called the GLO point (gage

length zero) and was sampled intermittently from nine to fifteen times

at each pressure level for each model. Total elapsed time to take

all gage and reference point readings at one pressure level ranged

from 45 to 75 minutes.

Upon completion of the initial data recordings, the pressure

level was incremented. A 15 to 30 minute pause was made to allow the

loading membrane to stretch to its new position and to permit the

pressure to stabilize at the desired level. In the PRET model tests,

the new pressure level was maintained slightly longer to allow creep

activity to diminish.
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Figure 3.20 Data Recording Devices
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Another set of radial measurements was then taken. This

cyclic procedure of loading and data recording was continued until

buckling of the test model occurred. The deformed position of the

buckled model was then photographed and the test was complete.

3.5 DATA REDUCTION

Due to the spherical nature of the experimental data obtained

during the test procedure just described, several unique problems

arose upon attempting to reduce the data to a meaningful form. First,

although the test models were nominally spherical in shape, the

fabrication procedures produced an imperfect surface. It, order to

describe this surface a method was required to define a theoretical

spherical shape having a determinable radius and center location

which best represented the experimental data. Deviations on the test

model surface from this perfect spherical shape were called initial

imperfections. In addition to the problem of defining this sphere

initially, its radius ro, the location of its center (Xo, Yo, Zo),

and the initial imperfections all changed as subsequent loadings were

applied.

To resolve these difficulties a method of data reduction was

chosen which consisted of performing a least-squares fit of a

spherical surface to all data points on a test model at a given

pressure. The three coordinates (Xo, Yo, Zo) of the center of this

theoretical "best-fit" sphere were then used as a reference point to

compute the radius ri to each gage point, where the subscript refers

to gage point i. Initial iperfections di were computed by subtracting

the radius ro of the perfect sphere from the radius ri to each gage
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di = ri - ro  3.1

Deflections due to an increment in the external pressure load on the

test model were determined from the following expression:

wi  (r)2 - (r) I +(Zo) 2 - (Zo) cos 0i 3.2

where the numbered subscripts represent successive pressure levels.

The quantity in brackets in Equation 3.2 represents a correction to

account for the vertical movement of the respective best-fit sphere

centers. This was necessary since it was known that the spherical

pivot on the Easterby apparatus did not move vertically relative to

the test model edge ring. No corrections were necessary for

horizontal changes AXo and AYo since they represented rigid body

translations of the test model.

A computer program to p,.rform the data reduction operations

just described was developed and is described in Appendix C. An

initial step in the program was to adjust the experimentally measured

radii values Ri for any error caused by drift in the electronic

apparatus. This was accomplished by adding any change in the GLO

reading to all radii values measured after each GLO point sampling.

Additionally, the smallest of the three readings at each gage point

was discarded since the farthest projection of the tip of the DCDT

device indicated the best seating of the device on a gage point. The

remaining two readings were averaged and a warning was Piven if the



58

readings deviated more than + .0001 inches from their average. This

check prevented using an erronecusly large data value from being

inadvertently included in the data base. The computer program then

performed a least-squares fit of a spherical surface to the adjusted

radzi, Ri. With the radius and the center of this best-fit sphere

thus determined, all the required quantities were available to

compute the initial imperfections di and the deflections wi due to

external pressure load, according to Equations 3.1 and 3.2.

3.6 MATERIALS TESTING

3.6.1 Brass. Three types of tensile specimens were prepared

from the stock material of the brass shell models. A type S specimen

was simply an eight-inch length of the H-section. Type T specimens

were representative of the B2 (two-inch grid) model and had

intersecting members soldered at a two-inch spacing along its length.

The type 0 specimens were designed to represent the one-inch grid

model and had the intersecting members soldered at one-inch intervals

throughout. All three specimen types are shown in Figure 3.21.

All brass specimens were tested at a strain rate of approximately

forty-five micro-inches per inch per second as compared to the near-

static loading rate during the shell model tests. An extensometer

having a two-inch gage length was used for the test, which conformed

geometrically to the one- and two-inch grids of the test models.

Values of Young's modulus and the yield stress (defined at

0.2% offset) of each specimen type were determined from standard

tensile tests. Since the stress-strain curve for brass was somewhat

L
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Figure 3.21 Tensile Test Specimens



604

nonlinear, a chord modulus was determined between 9 ksi and 54 ksi

for the S-type specimens. ASTM Standard No. E8 was followed in the

performance of these tests. In accordance with these specifications,

a least-squares linear fil was performed in order to establish the

elastic modulus of the brass.

3.6.2 Plastic. Tensile specimens (designated P-type specimens)

conforming to ASTM D638-61T, "Tentative Method of Test for Tensile

Properties of Plastics," were fabricated and constructed in order to

determine the Modulus of Elasticity of the plastic material. Tensile

specimens of this type are shown in Figure 3.21 also. The loading

rate for the specimens was approximately eighty-five micro-inches per

inch per second.

The tendency of the plastic material to exhibit creep was

recognized at the outset of this study. To approximate the creep

effects, a tension test at a constant stress of 500 psi was conducted

over a four-hour time period. The results of all tension tests for

both the brass and plastic specimens can be found in part 4.1.1 of

this paper Typical stress-strain curves are also presented.
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CHAPTER IV

RESULTS AND COMPARISONS

4.1 EXPERIMENTAL RESULTS

This chapter presents the results of all theoretical and

experimental investigations of the three reticulated shell models.

First a summary of the brass and plastic material tensile tests is

given. Deflection contour plots are then presented which demonstrate

the deflection patterns and magnitudes resulting from static pressure

increments applied to the models. Initial imperfections in the

geometries of the as-built models arc also shown. A corresponding

group of deflection contour plots reflect the NASTRAN code theoretical

predictions for each of the models so analyzed. Comparisons and a

discussion of these deflection results are given. Deflections along

selected reference lines are plottcl to illustrate differences in

the predicted and experimental results. The application of general

buckling theories to the experimentally observed buckling loads is

-, described in a final section.

4.1.1 Materials Testing. The results of the material tests

described in Chapter 3 are presented in Figures 4.1 through 4.4.

Figure 4.1 represents the typical stress vs strain response of a brass

H-section with no soldered joints (referred to here as an S-t'e

specimen). Figure 4.2 shows the tensile test results for a bra!3s H-

section having soldered joints at two-inch intervals along its length

(designated as a T-type specimen). The stress-strain curve for a brass
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H-section with soldered joints at one-inch spacings (called an 0-type

specimen) appears in Figure 4.3.

In determining the tensile modulus of elasticity it was observed

that the initial modulus value varied little anong the three brass

specimen geometries. The tensile modulus as determined from these

tests was taken as 10 x 106 psi. However, a significant reduction in

the yield stress (defined at 0.2% offset) resulted from the soldering

procedure. The yield stress was reduced from approximately 65 to 70

ksi for the S-type specimens to about 17 to 19 ksi for the T- and 0-

type specimens.

Stress vs strain response curves for the quarter-inch thick

plastic tensile specimens (P-type specimens) appear in Figure 4.4.

The tensile modulus thus determined was 187 ksi. This differed

slightly from the manufacturer's recommended value of 200 ksi in

tension and 240 ksi in flexure for the Boltaron 6100 material. The

difference was possibly due to heat effects induced by the vacuum

forming technique during manufacture of the plastic model. The tensile

test specimens were taken from a previously heated sheet of the

plastic material.

The single tension test performed to obtain a rough approxi-

mation of the effect of creep on the plastic shell produced the results

in Figure 4.5. This figure shows the specimen strain in inches per

inch versus the time in minutes. This was a constant stress test at a

stress level of 500 psi. A maximum strain of approximately .0003

occurred near an elapsed time of three hours.
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A summary of the preceding results 
and of the test model

geometries is given in Table 4.1.

TABLE 4.1

MODEL SUMMARY

Model B2 BI PRET

Grid Spacing 2-inch 1-inch 2-inch

Material Brass Brass Plastic

Cross-Section H H Rectangular

Young's Modulus 10 x 106 psi 10 x 106 psi 187,000 psi

Yield Stress 17-19 ksi 17-19 ksi 3000 Dsi

4.1.2 B2 Model Deflections. Contour plots of initial

imperfection data and or deflections resulting from the static

incremental pressure loads applied to the B2 model are presented in

subsequent figures. A schematic of the B2 member grid is given in

Figure 4.6. This plot shows the grid as if viewed from the center of

the spherical shell. Thus a point in the plane of the figure was

located by the horizontal distance R. "icos 0i' and by the vertical

distance R. " i " sin 0.. Also shown in the figure is the location

of the final buckle. A reference line was drawn from the edge ring

to the crown and back to the edge ring, and through the subsequent

buckle and other large distortion regions of the model. The reference

line de flections and the final buckle are discussed later in part 4.3

in which comparisons of predicted and experimental results are made. The

large dots in Figure 4.6 show experimental gage point locations.
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Reference Line

Exper-Imental Gage Point

.* . Buckle Area

Figure 4.6 B2 Model Experimental Grid
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The contour plot of Figure 4.7 represents the initial imperfec-

tions resulting from the manufacture of the B2 model. These

deflections reflect the deviation of individual joints or memhcr

intersection points from a "best-fit" of a perfect spherical sa,:facc

to the experimental data. The contour lines were spaced at intervals

of .0200 inches. Negative values of deflections are in a direction

toward the center of the shell, and shaded areas indicate regions of

positive deflection. Initial imperfection data was taken with the

pressure vessel filled. Considering the volume of the shell the

equivalent radial pressure applied initially to the models was .15 psi,

and all values of pressure loadings cited include this initial

pressure.

Figure 4.8a shows the deflection contours resulting from the

loading increment from a .15 psi hydrostatic pressure to a pressure

of 1.0 psi. The contour interval was .0020 inches. It was observed

during the test that the edge ring was not completely seated on the

pressure vessel supporting lip at the .15 psi pressure level. This

was reflected by the deflection pattern near the edge ring in Figure

4.8a. Consequently a reference pressure of 1.0 psi was selected for

the B2 test shell from which to compare deflection patterns.

The next four plots of Figure 4.8 show deflection contour

patterns in the B2 shell for 0.5 psi loading increments from 1.0 to

3.0 psi. Plots 4.8f through 4.8h represent contours for the loading

ranges 1.0 + 2.0 psi, 1.0 + 2.5 psi, and 1.0 - 3.0 psi, respectively.

The contour interval was .0020 inches.
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Figure 4.8f B2 Model: 1.0 to 2.0 psi
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The combination of initial imperfections and live load

deflections at the maximum pr..:sure of 3.0 psi is shown in Figure

4.8i. .x. obse-!e the change in the total deflection pattern, this

figure can be compared with the initial imperfection plot of Figure

4.7.

4.1.3 BI Model Deflections. Experimental results for the

Bl test model are shown in Figures 4.9 through 4.11. The model grid

work appea.s in Figure 4.9, together with the location of the final

buckle. Initial imperfections for the BI model are reflected in

Figure 4.10 with a contour interval of .0200 inches.

Figure 4.11a gives results of the pressure increment from .15

psi to 1.0 psi which shows an edge ring seating problem for the BI

model also. The reference pressure for Bl experimental data was

therefore chosen at the 1.0 psi level. Figures 4.11b through 4.11f

represent contour plots for 1.0 psi loading increments from 1.0 to

6.0 psi pressures. Pressure increments of 1.0 to 3.0 psi, 1.0 to

4.0 psi, 1.0 to 5.0 psi and 1.0 to 6.0 psi produced the results shown

respectively in Figures 4.llg through 4.11j. The contour interval

for all plots in Figure 4.11 was .0040 inches.

The sum of initial imperfections and the live load deflections

under the maximum external pressure load of 6.0 psi is represented

by the contour plot in Figure 4.11k. A comparison of this plot with

that of Figure 4.10 shows the changes in the total deflection pattern

of the Bl model.

4.1.4 PRET Model Deflections. Experimental results for the

plastic shell model (PRET) appear in Figures 4.12 through 4.14.



81

OZOO
....... ....

6 00
.. ....... ..
.. ........

........ f
..... . .... ... ................... .....

. .......... ..
CHE

.. ..... ... ... ...... ..... .0200..... ..... ....... .... .... Yr........ ...

. ..... ....

.............

.... . ... . .

0 600: *:::1::........... -?00

;9

. ........

.1209

.. UJ
.?00

........... .... ............. .. . ......... ... ::::::: :::
.......... . ............ ... o ... ....

..................... ..... .
.......... .V* ..................

. ............
::::::: ..... ........ .......... ........ ......... 
..
. ...........;10 .....10, ............ .......... ....
............... . ........... ....

. .......................
..... .........

Positive Deformation

Figure IA.8i B2 Model: Imperfections
Plus Deflections at 3.0 psi



82

- Reference Line

Experimental Gage Point

* Buckle Area

*Figure 4.9 BI Model Experimental. Grid



-.000

* 42 :~*Ott
t 

.

oe* .*,..

_ __0000 54
. 4toD

0200

Posit ive Deformation

Figure 4.10 Bi Model Initial Imperfections



84

-.00 -. 08%1

.. 00

Figure 4.11a BI ',1ode1: .15 to 1.0 psi



85

Figure 4.11b B1 Model: 1.0 to 2.0 psi
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Figure 4.lle Bi 'Model: 4.0 to 5.0 psi
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The experimental grid is given in Figure 4.12, again with a reference

line and the final buckle position. Figu:e 4.13 represents the initial

imperfections for the PRET model with a contour interval of .0200

inches. Since the edge of the PRET model was clamped to the pressure

vessel support lip no edge ring seating problem existed, and the

reference pressure level for this model was therefore .15 psi.

Deflection patterns for the exper.inenta data from thae .15 to 1.0 psi,

1.0 to 2.0 psi, 2.0 to 3.0 psi, .15 to 2.0 psi and .15 to 3.0 psi

pressure increments are given respectively in Figures 4.14a through $

4.14e. Figure 4.14f shows the total deflection pattern +,- to initial

imperfections plus the live load deflections under an external load

of 3.0 psi. This plot is best contrasted with the initial imperfection

only plot of Figure 4.13.

The hatched areas in these figures represent experimental gage

points which were inaccessible to the radial arm of the Easterby

apparatus. No experimatsl data was therefore available at these

locations.

4.2 THEORETICAL PREDICTIONS

4.2.1 B2 Model Predictions. Results of the NASTRAN computer

code runs are presented in the following figures. Figures 4.15a

through 4.15d represent deflection contours for 0.5 psi pressure

increments from 1.0 to 3.0 psi. The next set of plots, Figures 4.15e

through 4.15g, show predicted results for the 1.0 to 2.0 psi, 1.0 to

2.5 psi, and 1.0 to 3.0 psi pressure increments respectively. All of

the above plots used contour intervals of .0020 inches. Figure 4.15h

shows the sum of the initial imperfections and the predicted live load

deflections at 3.0 psi pressure.
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As noted in Chapter 2,-no theoretical predictions for the Bi

test model were made. Since the joints of all members were not

instrumented, the joint locations were unavailable.

4.2.2 PRET Model Predictions. Predictions of deflection

contours for the PRET test model are given in Figure 4.16. The

following pressure increments are represented in order: .15 to

1.0 psi, 1.0 to 2.0 psi, 2.0 to 3.0 psi, .15 to 2.0 psi, and .15 to

3.0 psi. A contour interval of .0040 inches was used. Figure 4.16f

shows the zombination of initial imperfections and the predicted

live load deflections at an external pressure of 3.0 psi.

4.3 COMPARISON OF PREDICTED AND EXPERIMENTAL RESULTS

4.3.1 B2 Model Deflections. Comparisons of experimental and

theoretical deflections for the B2 model were made from Figures 4.8

and 4.15. Upo;a doing so, it was immediately obvious that the correct

deflection patterns were well predicted but their magnitudes at

locations of large deflections were less accurate. In order to better

illustrate these differences the deflections along a reference line

were plotted in Figure 4.17 for the same pressure increments as in

the previous contour plots. This reference line (shown in Figure 4.6)

was selected so as to trace through areas on the shell experiencing

the largest displacements and thus representing potential areas of

buckle formation.

Three types of predictions are shown by lines representing

radial deflection in inches versus the meridional position of various

experimental points. Predictions using the split rigidity approach
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Figure 4.16b PRET Model: 1.0 to 2.0 psi
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Figure 4.16d PRET Model: .15 to 2.0 psi
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as expressed by Equation 2.10 are shown as the hatched line in these

figures. NASTRAN predictions appear as the dashed and solid lines.

For the B2 model, the solid lines were calculated by adding the

displacements predicted from a previous load increment to the grid

positions at the start of that increment to get a new set of grid

point locations for subsequent loading. This prediction method was

called the "progressive" method. A second set of NASTRAN predictions

appears as the dashed lines in the figures. For these calculations, the

grid positions at the start of each load increment were taken as those

measured experimentally. These predictions were called the "incremental"

calculations. The remaining data on these figures are the experimental

deflection values at each point along the reference line and are

represented by the circles.

These figures also showed good deflection pattern agreement

between NASTRAN calculations and the experimental results, with

magnitudes in potential buckle regions being underpredicted. This

agreement demonstrated that the original imperfections determined

the future deflection distribution and the location of the potential

and final buckles. Comparison of the progressive and incremental

NASTRAN calculations showed that the nonlinear growth of the imper-

fections in potential buckle areas was not caused by geometry changes

alone. A calculation of stresses in these distressed areas indicated

that material nonlinearities occurred in the members. For example,

at joint 227 the maximum combined axial and bending stress as predicted

by the NASTRAN incremental method at 2.0 psi external pressure load

was 12.6 ksi, and was 16.2 ksi at 2.5 ksi external load. Note that
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stress results were conservative since they ignored the potentially

severe residual stresses initially present in the shell due to the

soldering procedure, and neglected as well the underprediction of

deflection at node 227 above the 2.0 psi load level. Figure 4.2

showed that significant nonlinear material behavior was expected

above the 16 ksi stress level. It can safely be assumed therefore,

that the underprediction in the growth of the deflection pattern in

distressed areas was due to material nonlinearities in the brass.

It was also clear that for live load deflection predictions,

the split rigidity method was inadequate to predict either the

deflection pattern or its magnitudes. This method ignored iiLitial

residual stresses and material nonlinearities. Due to the magnitude

of the initial imperfections, the combination of split rigidity

predictions and imperfections shows reasonable agreement as observed

from Figure 4.17h. This combination of imperfections and live load

deflections is common practice, particularly for computing buckling

loads as will be shown later in part 4.4.

Since no NASTRAM predictions could be made and since the split

rigidity theory was inapplicable due to violation of its basic

assumptions, no reference line deflection plots were made for the Bl

model.

4.3.2 PRET Model Deflections. Comparisons of NASTIAN

predicted and experimental deflection patterns for the PRET model were

made by observing corresponding plots of Figures 4.14 and 4.16.

Excellent agreement between theory and experiment was observed except

at locations near the edge ring. These discrepancies were due in
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part to the difference in the pinned edge assumed in NASTRAN and

the actual edge support in the test.

Deflections along the reference line of Figure 4.12 appear

for the PRET model in Figure 4.18. NASTRAN predictions for the

"progressive" type analysis appear as the solid lines, and dashed

lines represent the "incremental" type approach. Split rigidity theory

predictions appear as hatched lines and experimental values are shown

by circles. Deflection magnitudes were well predicted throughout

except, as expected, in the potential buckle areas (areas showing the

largest inward deflections).

Close agreement of incremental and progressive type analyses

again suggested that nonlinear growth of the initial imperfection

pattern was due to more than an imperfect shell geometry. Material

nonlinearity, although likely a factor near the time of buckle forma-

tion, did not appear to initiate the nonlinear deflections near the

crown. For example, calculation of combined axial and bending stresses

in this area reflected typical values around 1000 psi at an external

pressure of 3.0 psi. Figure 4.4 indicated an approximate yield stress

of 3000 psi. Even if the experimentally measured deflections were

predicted (they were up to 50 percent low), the resulting member

stresses would still not indicate member yielding. Although the basic

assumptions of the NASTRAN analyses did not duplicate the actual test

conditions, the deflections over the majority of the shell indicated

the assumptions were satisfactory. The most likely reason for not

predicting the correct crown deflections was therefore creep in the

plastic material. The single approximate creep test cited in Figure 4.5

4 a -
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was conducted at 500 psi axial stress. One can safely assume that

peak shell stresses reached 1500 to 2000 psi at the 3.0 psi pressure

level. The effects of creep typically increase at higher stresses.

It was therefore speculated that creep, and finally the combined effects

of creep and material yielding, led to the significant nonlinear I

deflections and later to buckling of the.PRET test model.

The split rigidity concept again failed to predict the live load

deflection patterns and magnitudes, although the total deflection

results including imperfections were again reasonable as shown in

Figure 4.18f. The basic assumptions in this analysis of 1) linear

material behavior and 2) a uniform grid pattern which produced uniform

equivalent membrane and bending thicknesses, were not adequately

satisfied by the test conditions.

4.3.3 Discussion of Deflection Results. Since the appreciable

under-prediction of maximum deflections in the B2 model was due to

material yielding, a simple plastic analysts of a portion of the

buckled area was made. This analysis had two objectives: 1) to

determine if plastic behavior was to be expected, and 2) to approxi-

mate the magnitude of the deflections if plastic behavior occurred.

The area of the shell analyzed is shown in Figure 4.19a. This

area experienced large plastic deformations not predicted by the

elastic analyses. The actual geometry of this area was assumed

equivalent to the planar case of Figure 4.19b. This assumption ignored

potential shell action resulting from the approximately 1 : 20 rise

to span ratio of the section analyzed. The opening angle of the

section was 22.20. Nodal loads were applied in proportion to those



()AREA OF ANALYSIS BCL 3

(b) THE PLANAR CASE I .27P

225~ 2M ~ 2M 232

L ± L L

(c) THE MECHANISM

(d) BENDING MOMENT 2U
DIAG RAM
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used in the NASTRAN analyses. Continuous joints were assumed, and the

supporting joints were taken as fixed.

Results of the analysis showed the correct mechanism to be that

shown in Figure 4.19c, with the resulting moment diagram of Figure 4.19d.

The ultimate load (assuming a yield stress of 18 ksi for the brass

material) was P = 6.52 lb. Since the equivalent concentrated load PU

for a one psi external pressure increment was 6.05 lb, plastic behavior

was definitely to be expected for the maximum B2 loading which exceeded

3.0 psi.

The analysis also showed the last hinge would form at node 227.

The deflection thus computed was approximately .0500 inches at node

227. To get an estimate of how well this analysis predicted the excess

deflections not predicted by NASTRAN, the following procedure was used.

The NASTRAN-predicted displacements at nodes 225 and 232 were added as

rigid body motion to those calculated by the plastic analysis. The

total deflection at node 227 was thus computed to be .0640 inches, or

about 90 percent of the experimentally measured value at the 3.0 psi

external pressure load.

This analysis, although rather crude, indicated plastic behavior

was to be expected in the B2 model test and provided a rough estimate

of the deflection to be anticipated at ultimate load. The combined

results of the deflection studies also demonstrated the current

critical need for relatively quick and accurate analysis techniques for

predicting inelastic load-deformation behavior in space frames and

reticulated shells. This point will become more obvious in the next
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section, where buckling theories incorporating deflection criteria are

examined.

4.4 BUCKLING RESULTS

4.4.1 Parameter Variations. Several types of buckling were

previously investigated in part 2.3. Experimental buckling results

showed that general buckling occurred in all three models. Therefore,

two general buckling theories will be compared with test results in

this section. These theoretical buckling equations are repeated as

follows:

Buchert:

2Et2  I t '
m A 2A3

PcrE = {-0.54 - - 0.145 9.9 + 3.08 (-)
m m m

2.18

+ 1.09 (= )2 - 0.03 -- /9.9 )L + 3.08 t ) + 0.359 (-)
m m m m m

Von Karman: (adapted to the split rigidity concept)

t M 2 t b /2

.365E (f ) 2 ( .. ) 2.20
Pr E R m

Linear elastic material behavior was assumed in these equations and

they were therefore adjusted for anticipated plastic behavior as

follows:

Pcr TI PcrE 2.19

P

where n was termed a "plasticity reduction factor."
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Application of the above equations to the three test models

required interpretation of the following key parameters:

E = Young's modulus

t, t = equivalent membrane and bending thicknesses of the

reticulated shell models

R = shell radius

A = maximum radial deflection of the shell

n = plasticity reduction factor

Each of these parameters required that certain estimates and/or

assumptions be made. A brief discussion of each parameter and its

effect on the buckling equations follows.

Young's modulus E for the brass and plastic materials was

determined from standard tensile tests and interpreted as discussed

in part 4.1.1.

The equivalent thicknesses of the test models required an

estimate of an "average" member spacing and member pattern since these

quantities varied along the shell meridians. Since the model designs

were based on approximating a square grid pattern, the grid spacings

of 2.0 inches for the B2 and PRET models and 1.0 inches for the B1

model were used in the buckling equations.

It was observed during the tests that the local radius of

curvature of the potential buckle areas changed rapidly during the

loading sequence. Table 4.2 shows this effect. Beside each pressure

noted in the table are two values of radius R. The first was computed

by fitting a spherical surface to the experimental results for the gage

points within a region surrounding and including the final buckle
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area. The region was chosen as the area for which deflections were

significantly in excess of those predicted by NASTRAN during the highest

load increment. The area was taken within the noted contour of the

figure indicated in the table. For example, the fit for the buckle

area of the B2 model was computed using the 27 experimental points

located within the .0040 contour of Figure 4.8c. The second radius

value noted in the table was that for the entire shell and was computed

using all experimental data points. The buckle radius changed rapidly,

while the shell radius was affected little during the buckle formation.

If the largest buckle radii thus determined were substituted into the

buckling equations 2.18 and 2.20, the predicted buckling loads would be

reduced (at a minimdm) by the multiplying factors noted in the table.

These factcrs were computed from the ratio of the shell radius to the

buckle radius at the maximum pressure noted in Table 4.2.

The effect of deflections on the buckling pressure predicted by

Equation 2.18 was shown previously in Figures 2.9, 2.10, and 2.11. As

stated in part 2.3.2, the maximum deflection A could be chosen as the

deflection 1) predicted using the split-rigidity method, 2) predicted

by NASTRAN, or 3) measured experimentally. Current practice (3 7) is to

add the initial imperfections to the live load deflections determined

from the preceding three techniques. Other esti.mates were also

possible and are summarized in the following section.

To show the effect of the plasticity reduction factor n, the

B2 model was studied as an example. Computation of the factor from

Equation 2.19 required an estimate of the shell member axial stress.

The factor n is therefore plotted versus the axial stress aA for the
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tensile test of Figure 4.3, and the results are shown in Figure 4.20.

To account for nonlinear behavior below the yield stress of the

material the initial tangent modulus was used for E in Equation 2.9.

4.4.2 Buckling of the B2 Model. Photographs of the B2 test

model after it had buckled are shown in Figure 4.21. The buckling

pressure was between 3.0 and 3.5 psi.

A complete summary of the load-deformation relationships and

the applicable general buckling theories is represented in Figure

4.22a, b, and c, and in Table 4.3. The results of two deflection

prediction techniques are shown in the figures. The hatched line

represents the split rigidity theory prediction of the maximum

deflection due to combined membrane and bending effects. The solid

line represents the NASTRAN prediction of the maximum deflection in

the B2 model. This maximum occurred at node 227, which was the

central point of the final buckle. The experimentally measured

deflections at the same location are shown by the circles in the

figure.

Two general buckling theories assuming elastic material

behavior also appear in Figure 4.22. Buchert's formula (Equation

2.18) showed the effect of deflectiocs on the predicted critical

buckling load and is represented by the dashed line. The Von Karman

theory (Equation 2.20) as adapted to the split rigidity CGoTcePL

predicted a constant buckling load independent of shell deflections

and is noted at the 8.2 psi level.
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Figure 4.21 Buckled B2 Test Model
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As previously mentioned, the initial imperfections are

usually added to the live load deflections, and the combined total

deflection used for the quantity A in Equation 2.18. Figure 4.22a

shows load vs live load deflections only. Figure 4.22b represents

the same type of relationships, however the deflections shown are

the combination of live load deflections and "global" initial

imperfections. Global imperfections were those computed by

performing a least-squares fit of a sphere to all the data points

and applying Equation 3.1. The abscissa of Figure 4.22c represents

the sum of the "local" initial imperfections and the live load

deflections. Local initial imperfections were computed by

performing a least-squares fit of a sphere to only 'hose data

points within the area of the final buckle, and then applying

Equation 3.1. Recall that Table 4.2 was compiled using this approach

in order to trace the change in the local radius of the buckle area.

A summary of all buckling load predictions is presented in

Table 4.3. General buckling predictions are given for both Buchert

and Von Karman theories, and the Euler column buckling load is

shown. These results permit a quick comparison of the various

theories and the assumptions which were made.

Since the live load deflection predictions were based on

linear elastic analyses and it was known that nonlinear behavior

occurred, it was necessary to apply a plasticity reduction factor

to the results. For the B2 Model at the buckling load the member

axial stres3 was estimated to be 7 ksi. From Figure 4.20, the

corresponding reduction factor was 0.8. The predicred results of
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Table 4.3 for the B2 model would therefore be modified by this factor.

As an example, using the NASTRAN predictions (which were considered

more credible than the split rigidity technique for predicting live

load deflections) the predicted buckling load using Equation 2.18

was 5.7, 5.2, or 5.3 psi depending on the choice of the initial

imperfection value. Current practice is to use the local

imperfection in combination with the live load deflection. Thus the

predicted buckling load for the B2 model by using the preceding

reasoning (see Figure 4.22c) was 4.2 psi, a value within approximately

30 per cent of the observed buckling pressure.

From the parameter variations discussed in the previous

section, another correction factor related to Equation 2.18 was

considered. From Table 4.2, the local radius of the buckled area

was shown to increase rapidly as the buckling load was approached.

Extrapolating the experimental deflection curve of Figure 4.22c

to its horizontal asymptote, the deflection at incipient buckling

was .133 inches. A local radius of 19.5 inches was required in

Equation 2.18 to predict the correct buckling load. Projecting the

B2 model results in Table 4.1 above the 3.0 psi level, it is entirely

reasonable to assume that this critical radius value was achieved

near the critical buckling load.

4.4.3 Buckling of the B1 Model. The buckled configuration

of the B1 test model is shown photographically in Figure 4.23. The

buckling pressure was between 6.0 and 6.5 psi.

Load-deformation relationships and general buckling criteria

for the BI model are summarized in Figure 4.24a, b, and c, and in
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Figure 4.23 Buckled B1 Test Model
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Table 4.3. Only the split rigidity prediction of deflection is shown

in the figures since NAS12-.k calculations were not made for the Bi

model. Both the Buchert general buckling equation (dashed line) and

the Von Karman criteria appear in the figure.

A maximum deflection at incipient buckling of .157 inches was

estimated for the BI model. Considering geometry changes only, the

required buckle area radius to correctly predict the actual buckling

pressure using Equation 2.18 and Figure 2.24c was 19.0 inches. The

results of the radius change study (see Table 4.2) showed that this

radius value was likely achieved at a pressure slightly below the

6.0 psi level.

4.4.4 Buckling of the PRET Model. Figure 4.25 shows the PRET

model after it buckled at an external pressure of 3.15 psi.

The PRET model buckling criteria and load-deformation behavior

are shown in Figure 4.26a, h, and c, and Table 4.3. Both NASTRAN

(solid line) and split rigidity (hatched line) deflection predictions

are shown along with the Buchert (dashed line) and Von Karman buckling

predictions.

As Figure 4.26c shows, when the NASTRAN prediction of maximum

live load deflection plus the local initial imperfection was used in

Equation 2.18 a buckling load of 2.45 psi was predicted. This

predicted critical pressure was 78 per cent of the actual value, which

represents an under-prediction. The results of Table 4.2 indicate

that a significant local radius change occurred in the buckle area.

This evidence also substantiates the under-prediction of the critical

pressure for the PRET model. This under-prediction of buckling

behavior was not totally unexpected, and has been observed by numerous

other investigators.

V - .
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Figure 4.25 Buckled PRET Test Model
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CHAPTER V

SUMMARY AND CONCLUSIONS

5.1 SUMMARY

The objectives of this research were to 1) determine if

reticulated domes could be analyzed and would behave as continuous

domes, 2) to determine their load-deformation response up to the

point of buckling, and 3) to study the growth of imperfections in

model reticulated domes. A fourth objective was to check the

validity of several current buckling theories as applied to

reticulated domes.

A theoretical analysis was developed to predict the load-

deformation relationships of spherical reticulated domes subjected

to a uniform static radial pressure load. A "split rigidity"

concept was described in which the shell was given an equivalent

membrane and an equivalent bending thickness. Equivalent, in this

case, meant a thickness equal to that of a continuous shell

responding similarly in membrane and bending action. The theory

was based on elastic material behavior.

A second analysis approach was employed in the study, namely

a space frame analysis using the NASTRAN finite element computer

code. The measured geometry of the test models was used as input

to the analysis. The results of the application of a series of

incremental static loads were studied, with the deflected position

of the joints added to the original geometry to provide initial

conditions for a subsequent load increment.
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An experimental program to check the validity of the above

theories was then conducted. Three reticulated shell models were

fabricated to simulate the following grid patte,'ns: 1) a brass

model with a two-inch square grid; 2) a brass 'nodel with a one-

inch square grid; 3) a plastic model with a two-inch square grid.

The brass models were constructed of 1/8-inch H-sections. The

plastic model was vacuum-formed to a spherical shape and the desired

reticulated member grid pattern was then cut from the molded shell.

Tensile specimens of each material type were fabricated and were

tested to determine the appropriate material properties.

The test models were loaded hydrostarically with water pressure

in a test pressure vessel. The radial deflections at approximately

250 locations on each model were measured at increasing increments

of load. Measurements were made using a unique pivoted radial arm

fabricated specifically for spherical shell testing, and measuring

to an accuracy of .0001 inches displacement.

The deflection data taken at each load for the models was

reduced by fitting a spherical surface through the data using a

least-squares technique. Comparisons of theoretical predictions

and experimental data were then made by plotting deflections along

specified reference lines, and by making contour plots of the

deflection patterns throughout the model shell. The growth of

initial imperfections was then studied by comparing the initial

imperfection pattern with the deflection behavior under load.

Loading of each model continued until buckling occurred in

some portion of the shell. The buckling loads were then compared
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with several existing buckling theories. These theories included

general buckling theories by Buchert and Von Karman, local snap

buckling by Wright, and Euler column buckling.

5.2 CONCLUSIONS

Fabrication of the brass reticulated domes was quite difficult.

The silver-soldering technique required considerable heat, with the

resulting temperature differentials in the model causing severe

problems in maintaining design tolerances. Inward radial imperfections

ranged from 1/120th to 1/80th of the shell radii. In addition to

the imperfection problem, the high heat levels applied to the brass

caused material property changes. Examination of the results of

the brass material property tests indicated a significant reduction

in the material yield stress near the structural joints by nearly a

factor of four. The speculation of considerable inelastic material

behavior in regions of high deflections and stresses was verified.

The large nonlinear growth of the initial imperfection pattern was

primarily due to inelastic material response, and led directly to

the buckling failure of the brass models. Significant residual

stress patterns from the soldering technique apparently influenced

the inelastic material response also. Yielding of the material was

not as significant a factor in the plastic model. Rather, accelerated

creep at high stress levels was considered the primary influence on

the nonlinear growth of the initial imperfection pattern. Both

materials, as expected, exhibited a somewhat nonlinear stress-strain

behavior at low stress levels during tensile material property tests.
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The spherical shell test technique using the modified Easterby

apparatus proved to be fast, reliable, and accurate. The device

produced repeatable results with the desired sensitivity. Data

sampling with the semi-automatic kcy punch interface speeded the

process significantly. The data reduction program developed in the

course of this study provided a greatly simplified, rapid, and

straightforward procedure for handling the voluminous data produced

during the experimental program.

After development of the split rigidity approach for predicting

deflections and comparison of its predictions with the experimental

results, it was apparent that this approach did not adequately predict

live load deflections for the test models in the study. This was not

unexpected when the basic assumptions made in the split rigidity

theory were examined. First, designing a reticulated spherical shell

with uniform equivalent membrane and bending thicknesses was not

totally achieved in the models employed. Second, the brass material

used was not a linear elastic material as assumed, and the plastic

material experienced creep phenomena not accounted for in the theory.

Finally, a test model with initially stress-free members was not

achieved. The split rigidity concept produced considerably better

results for the plastic model than for those constructed of brass and

when live load deflections were added to the initial imperfections the

results were reasonable. The validity of the split rigidity approach

for predicting live load deflections was not clearly established by

this study since its basic assumptions were not adequately

satisfied.
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The analysis approach using the NASTRAN code, however, proved

to be more reliable and to shed considerable light on the source

of the nonlinear growth of deflection patterns in reticulated shells.

When compared with experimental results the NASTRAN predictions

exhibited good accuracy as to the shape of the deflected model.

The actual magnitude of the predicted deflections was less accurate

due to material nonlinearity and early yielding in the brass models,

and to creep in the plastic shells. These factors were not

accounted for in the NASTRAN approach.

The experimental results also demonstrated that the deflection

pattern growth was primarily dictated by the initial imperfection

pattern following model fabrication. Without exception, the three

models tested showed that the deflection patterns continued to grow

as during the first load increment (although not linearly), and

that the point of maximum deflection during the first load increment

(ignoring edge ring seating) became the location of the final buckle

at the buckling load.

The results of the check of current general buckling theories

for reticulated shells indicated satisfactory results for Buchert's

theory. Buckling of the models was predicted within thirty percent.

The plastic material behavior of the brass models was accounted for

through the use of plasticity reduction factors. The predicted

buckling load was below the experimental results for the plastic

model and was above the results for the brass models.
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The practical implications of this study are two-fold. First,

the split rigidity concept should not be considered invalidated by

the results of this research effort. In fact, the buckling load for

all three models was satisfactorily predicted using Buchert's

equation (based on split rigidity theory) and considering the total

deflection to be the sum of the live load deflection as predicted by

NASTRAN plus the local imperfection. The imperfections in the test

models obviously dominated their buckling behavior. For the case of

actual reticulated shells which would be built to closer tolerances,

the split rigidity theory would be expected to predict live load

deflections more accurately. Thus, this approach remains an

extremely useful, quick, and economical tool for the preliminary

design of reticulated domes. Initial estimates of member sizing

can be greatly facilitated by this method prior to a necessarily

more costly and rigorous conventional space frame analysis.

Secondly, the design and more particularly the construction of a

reticulated dome could realistically be checked by first performing

a post-construction survey of the shape of the shell. Using the

as-built geometry of the shell, a final computer analysis could be

made to determine points of maximum predicted deflection in the

constructed dome. These locations could then be checked using the

appropriate buckling equations such as those examined in this study.

Although not recommended for all domes, a post-construction analysis

of this type could be potentially helpful in making decisions on

the adequacy of construction projects which are questionable or in

dispute.
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It is clear that an exact technique for the prediction of

load-deformation behavior of reticulated shells up to the point of

buckling is not currently available. However, an existing technique

for the prediction of buckling loads in reticulated domes has

produced satisfactory results for the experimental verifications

in this study. The results of this effort have been presented in

the hope that added insight has been gained into the problem and

that others may be guided and encouraged by these results to conduct

further research in the area.
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APPENDIX A

THE SPLIT RIGIDITY ANALYSIS METHOD

The theory and analysis presented in this section were utilized
(20)

in the prediction of bending and membrane deflections of reticulated

spherical shells under uniform radial load. The principle of the

split rigidity concept is introduced here. Basic assumptions of the

method are presented, expressions for forces and moments are developed,

and boundary conditions for various degrees of edge fixity are

examined.

A.1 ASSUMPTIONS

The following assumptions formed the basis of the split rigidity

deflection prediction concept:

1) The shell material behaved in a linear elastic manner.

2) A reticulated spherical shell was to be examined.

3) The shell was loaded by a uniform radial pressure.

4) A constant equivalent thickness was assumed to replace the

shell-like structure for membrane action, and another constant equiv-

alent thickness replaced the reticulated structure for bending

behavior.

A.2 BENDING DEFLECTION THEORY

A.2.1 General. The problem was to investigate the bending

effect on a reticulated spherical sl~l by forces and moments

uniformly distributed along its lower edge or springing. By

treating the shell as having constant "equivalent" membrane and

bending thicknesses a modified closed form analysis as applied to
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thin shells was performed. An equivalent membrane thickness was

obtained by considering only the membrane behavior of the shell,

and an equivalent bending thickness was determined by studying the

effects of bending action on the shell. This concept was called the

split-rigidity concept.

A.2.2 Equilibrim. The basic shell theory referenced herein

was given by Timoshenko (  . Its extension to include the split

rigidity concept follows. The theory develnpment began by consid-

ering the equilibrium of a shell element bounded by two meridians

and tw-. parallel circles as shown in Figure A.l. The angle e defined

the position of a meridian. The angle 0 defined the position of a

parallel circle, formed by a normal to the surface and the axis of

rotation. A meridian plane and a plane perpendicular to a meridian

at a point on the surface were principal planes of curvature, and

the principal radii of curvature were of magnitude R for the spherical

case. From the figure, r = R sin 4. Based on the assumption of a

symmetrically applied load, the circumferential force N and M0 (per

unit length of shell) were constant along a given circumferential

line. The meridional normal force N, shear force Q, and bending

moment M (per unit length) changed along a meridian as noted in the

figure. The external load Z (force per square unit of shell) normal

to the shell was the only load applied. Changes in curvature were

neglected in deriving the three basic equations of equilibrium.

By taking the summation of forces tangent to a meridian, the

following differential equation resulted.
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d(N" r N" cos" + Q r 0 A.I

0 -

The summation of forces perpendicular to a meridian gave

II II

N rr o ) + Z r R = 0 A.2

The final equilibrium equation evolved from taking the summation of

moments with respect to a tangent to the parallel circle. This gave

d R = 0 A.3

A.2.3 Strains and Curvature Changes. For a symmetrical

deformation of the shell, the displacement of a point on the shell

was described by the displacement w normal to the middle surface and

the displacement v tangent to a meridian as shown in Figure A.2. Due

to these displacements, an element of a meridian changed in length by

the amount

dv - w d4 A.4
- d4

Since the original length of the element was R-d, the strain

in the meridional direction, e4, was

I (dv
= T - w) A.5

An element of the parallel circle underwent a strain C due to

the given displacements which was equal to

(v Ct - W) A.6
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Figure A.2 Shell Displacements

In order to obtain expressions for bending moments, the changes

in curvature were required. In terms of the given displacements the

change in curvature of a meridian was

Sd dw7

Similarly, in the plane perpendicular to a meridian the change

in curvature was given by

X COO (v+ ) A.8

d J
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A.2.4 Forces and Bending Moments. By the use of Hooke's law

the membrane forces and strains were related. Thus,

Et dv
N w) + V(vcoto - w)] A.9

it E t
N = m [(vcoto - w) + V(dv- w)] A.1O
0 Rv(--zw)d

In the above expressions E was the modulus of elasticity and V was

Poisson's ratio for the shell material. Since these equations were

obtained by considering membrane stresses and strains only, t wasm

used to designate the membrane thickness of the shell.

By relating bending moments and changes in curvature in a like

manner, the following results were obtained

-Et 3

b d dw dwS= 1[ (v+ ) + Vcot4t (v+-)] A.11Mo [To(l1  (v + do) d4)

-Etb 3

M b(-V [Coto + d v + A.12

In these equations tb was designated as the bending thickness of the

shell, since the expressions evolved from bending considerations only.

The practice of assuming t and tb to be different quantities was,mb

as mentioned before, called the split-rigidity concept.

A.2.5 Differential Equation Solution. The equilibrium

equations, Equations 1 to 3, contained five unknowns. They were the
I! I!

forces N), N, and Qo, and the bending moments M and M8 . By substi-

tuting Equations A.9 to A.12 into the equilibrium equations, the

number of unknowns was reduced to three: v, w, and Q4.
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Geckeler(31), however, suggested an alternate method of

solution by introducing two new variables. The first, V, was the

angle of rotation of a tangent to a meridian.

V (v + d) A.13R =

The second variable, U, was defined as

U = RQ A.14

For simplicity, Equation A.1 wes replaced.by considering

equilibrium of the shell above a parallel circle (sea Figure A. 3).

Since the objective was to determine the secondary bending effects

at the edge, no external load was assumed acting on the shell.

Figure A.3 Shell Edge Forces
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I, U
N = Q4 cote = jcoto A. 15

Substituting this expression into Equation A.2 and simplifying

(note Z = 0) gave

N -= % -€ 1 dU
N d A.16
0 do3 R d43

To relate U and V, Equations A.9 and A.1G were solved for the
is 13

displacements v and w in terms of 14 and NW giving

dv R "A1d - Ew EN o - VNO) A.17d--N

m

R '' I,

vcot - w - [N- %N A.18
Et o

Eliminating w from Equations A.17 and A.18 gave

dv R(I+v) [N N".1- vcot, = (1Et. [N - N ] A. 19
d43 Et N ]

Differentiating Equation A.18 yielded

dv v dw = R d A.20
d ote - snz - d =Et d [N 0  N]m

By eliminating the derivative dv/do from Equations A.19 and A.20, the

following resulted:

v + w = RV = R(+V)cot [ - N] A.21
d43 Etm M

R d " I "I

Et d43 [No - VNo]
m
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It II

Substituting Equations A.15 and A.16 for N and N., the first of

two equations relating U ard V was obtained.

Et V = 1 d2U Coto dU 1 -v cot2 )m R dy - R d R + U A.22

A second equation relating U and V was obtained by substituting

Equations A.11 and A.12 for M and H into Cie third equilibrium

equation, Equation A.3. Using the new variables U and V and introduc-

ing the flexural rigidity quantity Db = Etb 3/12(l-V 2), the desired

equation was

U 1 d 2V R AV + - (V + cot2€) V A.23
Db iTO R do

Thus the problem of edge bending of a spherical shell required

integration of the two second order differential equations A.22 and

A.23. Note that constant equivalent thicknesses were assumed through-

out. In terms of Q and V, the above equations were

d 2  dQO _-V + cot 2o) Q0 .- "t V A.24
+(cot od2 (V R2- A.2

d2V dV Qd + cot- (V+cot2 ) =

Rather than solving the preceding two equations completely, an

approximation was introduced and justifiea as follows. For thin

shells, the quantities Q and V damp out rapidly with increasing

aistance from the Iedge. Figure A.4(9 ) shows this damping effect for

several quantities of interest. It was assumed that Q and V were

rach smaller than theii first derivatives, and that their first

derivatives were in turn much smaller than their second derivatives.
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Figure A.4 Damping of the Edge Effects

This assumption was verified as shown later. Equations A.24 and

A.25 thus reduced to

d2Q
-z - Et V A.26
do m

S D2V A. 27

Db

These equations differed from the approach reported by Timoshenko(I1 )

in that the mambran" and bending effects were separated. This

separation (the basis of the split rigidity concept) is reflected

in the use of the membrane thickness t and the bending rigiditym

term Db. By eliminating Q from the above, the following fourth order

differential equation (9) was obtained:



f2

178

dV + 4K4V =0 A.28

where

t
K = 3R2 ( t-v2 ) T A.29

-b

Equation A.28 is generally known as the Geckeler (31) Equation.

Its general solution was represented as

V = Cle sin(K + yl) + C e sin (K + y2 A.30
11 22

where y represented phase angles to be determined from the edge

boundary conditions. Knowing that the edge disturbance damped out

when moving away from the edge, the first term in Equation A.30 was

diSregarded. A new variable a, the angular distance from the lower

edge or springing of the shell, was introduced. By denoting s as the

opening angle of the shell from the apex to the springing as shown in

Figure A.5, the following relationship was observed:

a= s -* A.31

Figure A.5 Angular Variables

Alm
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Thus the solution of the differen~ial equarton was written as

V = Ce-Ka sin (Ka + y) A.32

Note at this point the previous argument that the lower order

terms for Q and V in Equations A.24 and A.25 were ignored. The

first derivative effectively multiplied Equation A.32 for V (similarly

for Q ) by K, and the second derivative multiplied it by K
2. Haas(9)

stated that for thin shells (shells having a minimum radius to thick-

ness ratio of at least 50), the value of K is approximately 10. (For

reticulated shells, the thin shell criteria becomes R/tm, where R is

the radius and t is the membrane thickness.) Since the second andm

third terms in Equations A.24 and A.25 were approximately one-tenth

and one-hundredth the value of the respective terms used in the solu-

tion, it was felt that this approximation was justified.

A.2.6 Final Expressions. The expression for the slope of a

tangent to a meridian, V, was given by Equation A.32.

The shear force Q, due to edge bending, was obtained from

Equation A.27. Differentiating V the first time gave

dV =  KCeKa [sin (Ka + y) - cos (Ka + y)] A.33

Using rhc trigonometric identity for the difference of two angles,

the folloTing was observed:

=in [(Ka + y) [sin (Ka + y) - cos (Ka + y)] A.34

Thus

~~~1~t
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Therefore, differentiating V resulted in multiplying the basic

quantity by 'T K and employing a phase shift of -T/4. The final

expression for the shear force Qthus became

2D K 
2

b C-Ka ')Rz --- Ce Sil(KCC + Y- I A.36

The meridional force N,, due to edge bendiiig, was given by

Equation A.15

N cot A.37

The circumferential force N was obtained from Equation A.16

11 dQ 2 v2-DbK 3  K31

N d4: Ce sin (Ka + y - -)A.38

The deflection w, normal to the shell, was of primary interest

in this study.' In Figure A.6, note that the increase 6in the radius

of a parallel rircie was given by

r 0 e0  = (R sinl) C A.39

Figure A.6 Displacement of a Point



Thus the desired deflection w due to bending was

-6 - is
W = s = -RE = -E-- (No - VN A.40

m
'I

From Equations A.37 and A.38, note that N was of the order V k

greater than N, so the second term in Equation A.40 was dropped.

The final expression for w then became

RC -Ka 37r--- e sin (Ka + y - -4- A.41

Finally. the expression for the meridional bending moment M1

was obtained from the combination of Equations A.11 and A.13.

Dropping the lower-ordered term V for the reason given previously,

D br2K K
M, - b Ce-1  sin(Ka + Y -) A.42

R .4

A.3 BOWMA"RY CONDITIONS

A.3.1 Deflection Compatibility. Figure A.7 illustrates the

primary force reactions and the compatibility restoring forces and

moments (9) between a shell and its edge beam support. The first

requirement to satisfy compatibility between the shell and the edge

F F

-F

Fu A

Figure A.7 Compatibility Restoring Forces
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beam was for deflections. Therefore the following was necessary:

I, II

W + ws Wb +Wb A.43

In the above equation as in those following, non-primed quantities

represented primary or membrane ef. cts, and double-primed quantities

reflected the effects of bending. The subscript "s" denoted

properties of the shell, and "b" denoted properties of the edge beam.

The deflections in Equation A.43 were given as follows:

w - n R (N - VN A.44
s m s 5

where the subscripted angles *s and 0s denoted values at the shell
springing, and

of R it it
wS  E (N 0  VN ) A.45

m 5 5
3,

where N was neglected because it was of the order r2K smaller than
i! 

-

N0  (see Equations A.37 and A.38). Also,
s

R FHro Rr° N cos s A

wb E Ab EAb A.46

where A b was the cross-sectional area of the edge beam, and

itF~o Rr°Q

_ R Ho r00 s .A.47

wb = - - = EAbsinps

Substituting Equations A.44 through A.47 into Equation A.43 and

evaluating the terms at the springing where a = 0, the requirement for

deflection compatibility was that the constant C be as follows:
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-2K [ N0 + Nsr 0 cos

C m A tm A.48
r tom .

E[r2K sin (y -)+ Asins sin (y

A.3.2 Rotation Compatibility. A second requirement for

compatibility was that the rotations of the shell and the edge beam

match. This requirement was stated as

It II

V +Vs = V + Vb  A.49

whey the subscripts and primes were as defined previously. Since

there was no edge rotation induced by primary stresses, the first

term dropped out. The other terms were defined as follows:

V = Ce-Ka sin (Ka + y) A.50
5

Vb = (FHa - F vb) V = (-aN% cos s + bN% sin s)VT  A.51

where VT was the rotational flexibility of the edge beam (or the

rotation for a unit moment M ) and was gien by Roark (32) as

_ R2
VT El A.52

Next,

Vb (MT +aV -a) V A.53

Substituting Equations A.50 through A.53 into Equation A.49,

the requirement for rotation compatibility at the springing became
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C sin y N (-a coS s + b sin S)

VT 5 A. 54

+ R [-sin(y- + a/-Ks sin(-

For any case of edge support, the simultaneous solution of

EquaLions A.48 and A.54 for C and y supplied the required data for

the determination of combined membrane and bending deflections along

a shell meridian by the following formula,

w R [N - vN ] - RC e sin (Ka + y -3) A.55
m

Two special cases of edge support were examined as follows:

A.3.3 Simply Supported Edge. The case of a very flexible

edge beam was readily analyzed by noting that the edge bending

moment MN was zero. This effectively replaced Equation A.54 from

which y was otherwise determined. From Equation A.42 the phase

angle was then equal to 7r/4. The constant C was found from Equation

A.48, and the results substituted into Equation A.55 to give the

values for combined membrane and bending deflections along a meridian.

A.3.4 Fixed Edge. Since at a iixed edge the slope V was

zero, the phase angle y became zero. The combined membrane and bend-

ing deflections were then found as in the previous case.

-Ji
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APPENDIX B

STATIC ANALYSIS BY THE STIFFNESS METHOD

A static analysis by the stiffness method was performed using

the NASTRAN finite element computer code. The code has numerous

analysis options, finite elements, and types of loadings whicb make

it a very useful and versatile structural analysis tool. Described

in this section are the options used in the analysis of the

reticulated shell models, the program flow, and the solution

procedure in a typical NASTRAN static analysis.

B. 1 ASSUMPTIONS AND DEFINITIONS

Linear elastic material behavior was assumed in the analysis

methoid described herein. Joints were assumed to provide full

moment transfer. The location of each joint was specified tu a high

degree of accuracy using the measurement techniques described in

Chapter 3.

The analyses of the test models utilized the advantage offered

by the spherical geometry of the shells. NASTRAN provided for

description of the problem geometry in either rectangular,

cylindrical, or spherical isplacement coordinate systems as shown

in Figure B.1. Each joint, or grid point, had a unique displacement

coordinate system associated with it. The so-called "global"

coordinate system was the collection of all displacement component

directions in their own coordinate systems. All matrices were

formed and all displacements were calculated in the global

coordinate system.
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Figure B.1 NASTRAN Coordinate Systems
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NASTRAN finite elements included rod, bar, plate, and shell

elements, among others. Bar elements were selected for the reticulated

shell analyses. The bar element included axial, bending, and

torsional behavior.

Static loadings available included concentrated loads at grid

points, pressures on surfaces, or equivalent loads resulting from

thermal expansion, from enforced deformations of structural elements,

or from enforced displacements of grid points. The first option was

selected and applied hera, with each concentrated load calculated as

described in part 2.2.

Constraints could be applied to a structure in the form of single-

point and multipoint constraints. Single-point constraints were

applied by specifying the value of enforced displacements, any or all

of which could be zero. Multipoint constraints were defined by an

equation of the form 5A u = 0, which implied a linear relationship

among the specified degrees of freedom uj. Multipoint constraints

were employed to enforce a zero vertical displacement of the brass

model edge ring.

B.2 GENERAL PROBLEM FLOW

The general problem flow of a NASTRAN static analysis by the

stiffness method is shown in the flow chart of Figure B.2. The

application of the pattern shown is presented in the following

section as the solution procedure is described.

B.3 NASTRAN SOLUTION PROCEDURE

Having input all tbe required data to NASTRAN, the geometry

processor performed the following tasks. All coordinate systems were
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Figure B.2 General Problem Flow
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transformed and the locations of all grid points were determined in

the "basic" or global coordinate system (a rectangular coordinate

system). Internal resequencing of grid point numbers was performed if

specified. Multipoint and single-point constraint equations were then

generated.

The stiffness matrices were then formed and assembled onz grid

point at a time, by columns, in internal sequencing order. At this

point the global stiffness matrix was complete.

Before imposing constraints the structural problem was stated as

[Kgg] Ug) = {Pg B.I

where [Kgg] the global stiffness matrix

{Ugl = the global displacement matrix

{Pg} the global load matrix

In the above equations, square brackets indicate two-dimensional

arrays and twisted brackets denote column vectors.

Multipoint constraints were expressed as

[Rg] {Ug} = 0 B.2

where [Rg] was a matrix of constraint coefficients supplied by the

user. By specifying the degrees of freedom made dependent by each 4

ir constraint equation, the {ug} matrix was partitioned to

fug = n B.3

Um
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where um was the set of dependent degrees of freedom. The constraint

coefficient was similarly partitioned as

[R] = [ Rn.] B.4

Thus Equation B.2 was

[Rn] {un) + [Rm] {um) = 0 B.5

Since [Rm] was ncnsingular, a multipoint constraint matrix was defined

as

[Gm] = [Rm - 1 [R I B.6

so that

{um) = [Gm] {un B.7

The structural proolem as stated in Equation B. i was expressed

as

[§~ .~] ~} =B.8

where the superscript T indicated a matrix transpose.

By adding the equations of constraint to the above equations of

equilibrium, the result in partitioned form was

Knn Knm Gm T u Pn

K P B.9

Gm -I 0 qm 0
Lm



where (qm) was the vector of constraint forces on fum } , and [I]

denoted the identity matrix. Upon eliminating um and qm the result

was

R'Kn] {un } = { n }  E.1O

where

T T KMMB1Knn = K~n::Gm+Y+ GmK=G B. 11

and

TPn = Pn + G; Pm B.12

As described earlier, single-point constraints were applied to

the set of displacements us in the form

{us} = {Ys! B.13

where {Ys) was the enforced displacement vector, any or all of whose

members could be zero. Therefore {un } was further partitioned as

un= -- f B.14

us

where {uf) was the free or unconstrained vector. The stiffness

matrix [Knn] similarly became

rKff Kf;

[KnnJ T ]B.15
, , 5

-,"-.



192

The complete structural equations including the single-point

forces of constraint qs became

KfT sI - qU = YPsB. 16 i

A straightforward elimination gave

[KffI {uf} = {Pf - [KfsI {Ys } = {Pf} B.17

Solution of Equation B.16, as with all other equaLions of the form

[A] {X} = [B}, was accomplished using triangular decomposition.

No matrix inversions were performed in NASTRAR.

The solution procedure of Figure B.2 chus progresst d to the point

of generating and transforrairg the load vectors. The global load

vector [Pg} was partitioned according to the multipoint constrained

coordinates um ar.d the coordinates un which were not multipoint

constrained, or,

Pn
{Pg9} = n__ B.18

Pm

Multipoint constraints were eliminated by

{Pn} = {Pn } + [GT ] J- B.19

{P } was further partitioned according to the single-point constrained
n

set us and the free coordinate set uf as

-n
} =f { } B.20

Ps
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whereupon the single-point constraints were eliminated by

{P n = ;n } + [] {PM}  3.21

Solution of Equation B.17 allowed recovery of the independent

displacements un in the following manner. The single-point constraint

set us was evaluxated as

{us} = {Ys} B.22

where Ys was the enforced displacewont vector. The free and

constrained displacements, uf and us , were then merged to form

Uf

{-} - {u I
us n

where the arrow designated the merging process.

The last step in the problem flow of Figure B.2 was performed by

recovering the multipoint constraint set um,

{urn) = [Gm] {uni B.23

and by merging u and u to form the global displacement matrix

U

n

n { { B.24

UM

A simple task to recover the single-point forces of constraint was

accomplished using the second row of Equation B.16, or,

{qs) -{Ps } + [KfT] {uf} + [KssI {uS } E.25

... ~. .
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Having the g] 1 displacement matrix, the solution procedure was

completed by calculating the internal forces and stresses in the

conventional manner. This information was then output in appropriate

form. For example, typical bar element output included bending

moments at both ends in two planes, transverse shear forces in two

planes, axial force, and torque.
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APPENDIX C

LEAST-SQUARES SPHERICAL FIT CO'.MPUTER PROGRAM

C.1 GENERAL

The computer program described in this section was developed to

reduce the data from the test series described in Chapter 3. The

functir of the program was to perform a least-squares fit of a

spherical surface to the test data, and it will be described in four

parts. The theory of the fitting technique is developed first.

Operation of the mainline program is then described, followed by that

of the two program subroutines. The final portion of this appendix

describes typical input and output formats and includes variable

definitions and a program listing.

C.2 THEORY OF THE LEAST-SQUARES FIT

The objective of the following theoretical development was

to determine a theoretical spherical surface which providedi the best

"least-squares" fit to a set of radial measurements on a test model

of a spherical reticulated dome. The geometry of the problem is

given in Figure C.l. In this figure, point J represents the origin

of the coordinate system and physically was the center of the

spherical ivot of the Easterby apparatus described in part 3.3.2.

Experimenta L values of the radial measurements taken during the

tests are denoted by Ri. The subscript refers to gage point Pi on

the test model, which was located at (Xi, Yi, Zi) relative to the

origin.

LIl
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Point K denotes the center of the theoretical spheri~al surface

and is located at the coordinates (X0, Yo, Zo). The radius of this

surface Is given by the quantity ro. It is assumed that points J and

K are sufficiently close together that the angicc i and 61 required

to locate each gage point can be satisfactorily computed from Ri and

the arc distances measured on the surface of the shell. The quantity

ri represents the distance from the theoretical sphere center at

point K to gage point Pi on the test model, and can be expressed

mathematically in rectangular coordinates as:

r 2 = (X - )2 + (Y, - Yo)2 + (Z - Zo)2 C.

Transforming to spherical coordinates, the following apply:

Xi = Ri sin icos 0i = RiA i

Yj = Ri sin €i sin 6i = RiBi C.2

-i = Ri cos i = RiCi

Substituting expressions C.2 into Equation C.1 a::d simpi1 ying gives

r [Ri2_2Ri(XoAiY+YoBi+ZoCi)+X02Y 2+Z2]l/
2  c.3

ri  0 0+oiZ~)X2 .

Assume that N experimental values of Ri, 01, and 6i were given

along with the above expression ri relating these values to the

theoretical sphere center. It was desired to determine the radius

ro and the center coordinates Xo, Yo, Zo of a theoretical spherical

surface which provided the best least-squares fit to the experimental

data values, Ri. In mathematical terms, it was required to determine

the minimum value of a function defined as
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S N= (r o - ri )  C.4
i=l

Thus S represents the sum of the squares of the differenc--es between

the radius of the best-fit sphere and the radial distances to the

shell.

In order to minimize S, (a function of the four unknowns ro,

X0, Yo' Zo) the first partial derivative of S with respect to each

unknown was set equal to zero. Solving the first such equation for

OS/ar o gave

L N
= = a [E (ro-rj)I ro-r )

aro @ro i=l i=1 a

N , N
E Z 2(ro-ri). (ro-ri) = Z 2 (ro-ri) 0
i=l i=l

Therefore,

N,
E ri

r = i=l C.5
N

Similarly,

;S = 5xo [(ro-ri )] - 2 (ro-ri). a riaX°  i=l i=l aXo

N 1 -i
-2 E (ro-ri). - (ri) (-2RiAi+2Xo) = 0

i=l 2

Thus,

N (ro-r)
I (Xo-Rik) = 0 C.6

i1l ri

KI
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The two remaining partials were similar to the preceding operation

and are sunimarized as

N (' -- r!)1

E rt (Y0-Ri
Bi) = 0 C.7

i=l r

N ('7-rj)
E (Zo-RiCi) = 0 C.8i= l r '

i

Thus the Equations C.5 through C.8 represent four simultaneous

nonlinear equations in ro, X0 , Yo, and Zo. When solved they yield

the radius and center coordinates of the theoretical "best-fit"

spherical surface to the experimental data points.

Solution of these equations was accomplished using an iterative

linear extrapolation technique. Essentially it consisted of making

a small change in each variable, computing the change in the four

summations, and projecting along the slope of each variation to the

desired solution. For example the solution of Equation C.6 is

diagrammed in Figure C.2. The summation in C.6 was computed for two

X0

Figure C.2 Solution of Equation C.6
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trial values of Xo as indicated by points 1 and 2. The slope of a

line through th'e re~ult.:,Z ordinates projected through point 3, which

was the desired solution tor Xo if the summation varied linearly with

X0 . Experience indicated that the variation of the equations was

very nearly linear, which allowed setting confident convergence limits

on the summations. A bound of +.000025 inches was established for

each of the four unknowns.

C.3 MP.INLINE PROGRAM

T4'e mainline program is presented in LA'e flow chart of Figuze C.3.

Only the main operations are included thereon with a complete print-

out of the program given on pages 211 through 213.

TbQ first step was to read loop indices and first estimates

for the unknowns Xo, Y0, Zo, and for convergence limits on the

summations of Equations C.5 through C.8. Angular locations 0i and 6j

(the original design values were used) for each gage point were then

read and the coordinate transformation constants Ai, Bi, and Ci were

computed. The gage points to be used in the spherical fit were also

read.

At this point a loop began in which data for all pressure

levels of interest was reduced. First a pass was made to subroutine

REDUCE for calculation of the experimental radii Ri. A call was

made to subroutine ITER to perform the fit of a spherical surface to

the experimental data. Radial distances ri from the theoretical

sphere center to each gage point w re then calculated. Initial

imperfections were determined by subtracting the radius ro for the
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START

READ LOOP INDICES AND FIRST
ESTIMATES OF Xo, Yo, Zo

READ DATA POINT LOCATIONS 6 0iJ

I I 
READ GAGE POINT NUMBERS To=

USED IN SPHERICAL FIT-

CALL REDUCE TO CHNGEDCD~f
READINGS TO EXPERIMENTAL RADII K 1, KK

I-TERTOEFOM SPHERII FIT

COMPUTE AND PRINT DEFLECTIONS I I iJ

I END

Figure C.3 Mainline Program Flow Chart
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best-fit sphere from the r' values. The loop was completed with the
I

storage of ri values in an array for later manipulation.

Deflections (due to load) at the ith gage point between any two

pressure levels 1 and 2 were found using the following expression:

wi = (r)2 - ()1 + (Zo) 2 - (go)l] cos C.9

C. 4 SUBROUTINES

C.4.1 Subroutine REDUCE. The function of this subroutine

was to change the voltmeter readings of the DCDT device of part 3.3.3,

to values of experimental radii Ri. Its operation is diagrammed in

the flow chart of Figure C.4. A print-ott is given on page 214.

A description of several radial arm dimensions is made here

with the aid of Figure C.5. This figure is a schematic of the radial

arm assembly in which the distance S1 was the measured distance from

the spherical pivot of the Easterby apparatus to the flat portion of

the radial arm tip when the voltmeter reading was identically zero.

The dimension S2 was the measured distance from the flat portion of

the tip when this tip was properly seated, to the middle surface of

the test shell model.

The subroutine commenced with the reading of the test model

designation, the constants SI and S2 and the pressure level. For

each gage point the two largest voltmeter readings were selected and

averaged, since the farthest travel represented proper seating of the

spring-loaded DCDT tip. This average, rather than the largest

measurement only, was taken to avoid a gross error in reading a single
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START

READ CONSTANTS AND PRESSURE[

READ GAGE POINT NUER AND
THREE DCDT READINGS
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ECK REDNS FORCNISENCY

ADJUT FR CANG INGLO READING IF NECESSARY1

RETURN

Figure C.4 Subroutine REDUCE Flow Chart
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large data value. Such an error would have been detected when

checking the two readings against their aveyage, and if a deviation

larger than + .0001 inches were noted a warning message was printed.

The experimental radius was then computed by the following expression:

Ri = S 1 + S2 + VR - AR C.10

In this equation, VR is the average voltmeter reading converted to

inches and AR represents the drift in the recording apparatus as

reflected by a change in the reading of the GLO gage point. The

calibration factor for the DCDT device was 25 volts per inch.

C.4.2 Subroutine ITER. This subroutine -performed a least-

squares fit of a spherical surface to the experimental radii Ri. A

flow chart of this routine is presented in Figure C.6 and a print-

out can be found on pages 215 through 217. Note that the program

version documented herein was executed on a machine having sixty-bit

words. The user is cautioned that if low-bit machines are used, the

following variables should be designated as double precision: ri,

ro, and the summations of Equations C.5 through C.8.

Upon entry to subroutine ITER, ri and the summations of Equations

C.6 through C.8 were computed based on initial estimates of X0 , Y0,

and Zo . The quantity r0 was computed directly from Equation C.5.

Increments were then added to Xo, Yo, and Zo prior to entering the

main iteration loop of the routine. This loop established a second

solution set to Equations C.5 through C.8. As illustrated in Figure

C.2 for the solution for Equation C.6, the iterative solution technique

extrapolated linearly a solution for X0, Y0, and Zo at the point where
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the respective sumations were zero. During this first projection,

the convergence limits for the surmiations were computed based on a

bound of + .000025 inches for each of the four unknowns. If the

convergence criteria were not met, X0 , Yo, and Zo were incremented

based on the linear extrapolation and the loop was repeated until

convergence occurred. Normally convergence was attained within five

to seven iterations.

C.5 PROGRAM4 INPUT AIJD OUTPUT

C.5.1 Input Data. The input data required by the program is

shown on page 218. Six card types are used and are described below.

The basic units used are pounds ane inches.

Card type 1 contains four variables. One card is required. The

variables are: KK, II, JJ and JP.

FORMAT: (20(IX,13))

KK - The number of data sets (one per pressure level) to be fitted.

II -- The total number of gage points on the test model.

JJ - The number of gage points to be used in the least-squares fit.

JP -- The number of pressure pairs to be compared through deflection

calculations.

Card type 2 contains 10 variables spread over two cards. They

are XO, YO, ZO, DXO, DYO, DZO, ESX, ESY, ESZ, and ERROR.

FORMAT: (lX,7FI0.6)

XO, YO, ZO - Initial guess at location of theoretical sphere center K

with respect to the origin J in Figure C.l.

DX0, DYO, DZO - First trial increments in XO, YO, and ZO, respectively.
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ESX, ESY, ESZ -- Convergence limits on the summations of Equations

C.6 trough C.8.

ERROR - The desired accuracy on XO, YO, and ZO.

Card type 3 contains 2*JP variables, 20 variables per card.

They are !Pl(K) and ;P2(K).

FORMAT: (20(lX,13))

IPl(K) -- Data set number (in order read in) of the lower of two

pressure levels to be compared.

IP2(K) -- Data set number of the higher of two pressure levels to be

compared.

Card type 4 contai-.s 2*JJ variables, six variables per card. They

are PHD(1) and THD(I).

FORMAT: (3(4X,2F8.2,6X))

PHD(I) -- The meridional angle irom the Z-axis in Figure C.1 locating

each gage point (angle in degrees)

THD(I) - The circumferential angle from the X-axis in Figure C.l

locating each gage point (angle in degrees).

Card type 5 contains II variables, twenty per card. They are

IX(J).

FORMAT: (20(IX,13))

IX(J) -- The gage points to be used in the least-squares fit.

Card type 6 contains four variables. One card is required. They

are MODEL, S1, S2, and PR(N).

FORMAT: (lX,A4,7X,3(4X,FlO.0))

MODEL - An alphameric character designating the test model.

Sl,S2 - Radial arm dimensions defined in Figure C.5.
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PR(N) - The pressure level to which the following data applies.

Card type 7 contains six variables, four of which are read.

A total of JJ cards are required plus one card per GLO measurement.

The four pertinent variables are K, (RD(J), J = 1,3).

FORMAT: (18X,13,4X,F6.O,2(7X,F6.0))

K -- The gage point number.

RD(J) -- DCDT output voltage (in volts) as transcribed to cards

through the key punch of part 3.5.

C.5.2 Typical Program Output. In addition to echo-printing

the input data, the program output consisted of three general types

of output. This output is shown in its printed form on pages 219

to 221.

Output type 1 was printed from subioutine ITER and monitored

the least-squares iteration scheme. The quantities printed at

every cycle in order from left to right were: RO,XO,YO,ZO,

followed by the summations of Equations C.6 through C.8, respectively,

and a cycle couiter ICNT.

FORMAT: (7(2,',Fl3.6) ,16)

Output type 2 presents the results of the data reduction for

both original and final data. The quantities printed are in order:

gage point number i, experimental radius Ri, theoretical radius ri,

and the difference between the theoretical radius r and the radius

ro of the theoretical best-fit sphere. The latter quantity, entitled

DIFF on the printout, represented the initial imperfections in the

shell.

FORMAT (3(lX,13,2X,F8.4,2X,F8.4,2X,F7.4,7X)

-- week-
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Output t -3e 3 gives values of the gage point deflections

between pressure levels. The quantities printed are gage point

number i, followed by its deflection DEFi.

FORMAT: (8(4X,I4,F7.4)
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DEFINITION OF VARIABLES IN TH- MAINLIN- PROGRAM

A(I) = SIN(PHI) * COS(THE)
B(I) = SIN(PHI) * SIN(THE)

C(1) = COS(PHI)
D(I) = TEMPORARY STORAGE LOCATION FOR VARIABLE A(I)
DEF(i) = DEFLECTION AT GAGE POILT I BETWEcN TS-1O PR--SSUR-: L..VZLS
DIFF(I) = DIFFERENCE BETWEEN RADIUS RO OF BEST-FIT SPHERE ANO

RADIUS RIP FROM ITS CENTER TO GAGE POINT Is
DXO = IN,REMENT IN XO
DYO = INCREMENT IN YO
OZO = INOPEMENT IN ZO
E(I) = TEMPORARY STORAGE LOCATION FOR VARIABLE D(I)
ERROR = ALLOWABLE VARIANCE IN XOYO, AND ZO
ESX = ALLOWABLE VARIANCE IN iQUATION Aeo SUIMATION
ESY = ALLOWABLE VARIANCE" IN EQUATION A97 SU.MATION
ESZ = ALLOWABLE VARIATION IN EQUATION A,8 SUMMATION
F(I) = TEMPORARY STORAGE LOCATION FOR VARIABLE C(I)
I = LOOP INDEX
IPI(K) = LOWER OF TWO SETS OF PRESSURL LEVEL DATA BEING

COMPARED
IP2(<) = UPPER OF TWO SETS OF PRESSURE LVEL DATA BEING

COMPARED

IX(J) = GAGE POIT NUMBERS TO BE USED IN LEAST-SQUARES FIT.
J = LOOP INDEX
JJ = TOTAL lJU;1.ER OF GAGE POINTS 0N A TEST MOODL
JP = NUMBER OF PRESSURE LEVEL COMPARISONS TO BE MAI

K = LOOP INDEX
KK = NUMBER OF PRESSURE LEVEL DATA SETS TO B. REDUCtO

L = TEMPORARY STORAGE LOCATION FOR VARIA3L. IPI(K)
M = TEMPORARY STORAGE LOCATION FOR VARIABLE IP2(K)
MODEL = ALPHAMERIC DESIGNATION OF TEST MOOtL
N = LOOP INDEX

PHD(I) = MERIDIONAL LOCATION OF GAGE POINT I IN UEGR.--S
PHI(I) = PHD CONVERTED TO RADIANS
PI = 3,i4159265
PR(N) = PRESSURE LEVEL BEING ANALYZ-f
R(I) = EX:ERIMENTAL RADIUS TO GAGE POINT I MEASUR..D FROM

SPHERICAL PIVOT CENTER 014 EAST;.RBY APPARATUS
RF(M,I) = TEMPORARY STORAGE LOCATION FOR RIP(I) VALU.S,
RIP(I) = RADIUS TO GAGE POINT I FROM CENTER OF BEST FIT SPHERE
RO = RADIUS OF BEST-FIT SPHERE
S(I) = TEMPORARY STJRAGE LOCATION FOR VARIABLE R(I1
TH9(1) = CIRCUMFERENTIAL LOCATION OF GAGE PCI;T I IN DQGREzS
THE(I) = THD(I) IN RADIANS
XO = X-DISTANCE BETWEEN CENTER OF SPHERICAL PIVOT Or

EASTERBY APPARATUS ANO THE CENTER CF THE B.ST-FIT
SHERE

K B
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Yo = Y-DISTANCE BETWEEN:I CENIEP.-' OF SPHe-RICAL PPVjT ON
EASTERBY APPARATUS AUD THC.- CENTEIR CF TH.-- :J.'T-rir
SPHE RE

ZO = Z-31STANCE BLETWEEN CENTER OF SPHiERICAL PIJUT 014
EASTERBY APPARATUS A1ND THE CEUTEP. CF THE ULST-FIT
SPHERE

zoo (N~) = TEMPORARY STORAGE LOCATION4S FOR THE VARIABLLS ZO

ZROGRAM SHELL (INPUT,OUTPUTTAPE-5=IhPUTTAPc=OUTPUT)

*IP1(IC),1PM2(%)
DI1ME NS ION PHD(30G),THD(3C)rIFF3C)IX(3.j)wD(30.,t
4E(3Gk'o9F(3e0t )qS(3'O)

1 FOPMAT (Zfl(iX,1))
2 FORMAT (8(4X,I4,F7o4)v/1
3 FORMAT (4(lXv139lXvF8.3vl1XvF9c3l7X)/)
4~ ORMAT (*I*)

5 rORMAT(1X,* THIS IS THE 4,AL. 1* MODEL. THEZ PkRESS-URE is *,at-

6 FORMAT (4(lX,* PT PHI THETA *s7X)//)
7 FORMAT (li,)
3 FORM'AT (4X,10(1XF6.2,* PSI*))
9 FO MAT(3(1X I 3,2XF8,4,EX,F6.4,2XF7.4'7X) ,/)

i'j FORMAT ( 3C* PT R DATA R FINAL lFxq1
15 FOkMAT (lX,7Fl0s6)
23 FORMAT (3(4X9 2F892,6X))

31 = 3,14159255
ARITE (6,4)
irEAD (5,l) KK,II,JJ,JP
'RITE(5,1) KKgIIJJJP
READ (5,45) XOYOZO, DXODYO,OZOESXESYE"SZ,ERROR
dPRITE- (6915) XO,YO,ZO, OXO,DYOJZ3,ax$.S~,Y',E7szt:iRORI
ZrEAD (5,1) (IPl(K),1P2(K),K=1,lJP)
WRITE (591) (IPI (K), 1P2 (K) ,K=1,JP)
READ( 5,29) CPHD(I),THD(I),I=1,JJ)
4RITV (b94)
WRITE (6v6)
4RITE- U,3) (I,'HD(I),THD(I),I=1,JJ)
0O IN3 I='i,JJ

THE(I) = THOMI * PI/180.
3(I) =SIN(PHI(I) * COS(THE(I))
7-(I) =SINCPHI(I)) * SIN(THLI)
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103 F(I) =COS(PHIII))
WRITE (6t4)
READ (5,1) (IX(J)9JitII)
)J 21 .1I
I =IXCj)

A(J)=D(I)
3(j)=rE(I)

21 *(J)=F(I)
00 33 N = ,KK
3ALL REDUCE (PR, MODEL,9JJ914)
)0 19 I=1,JJ

19 S(I)=R(I)
DO 20 J 1,11

2 -R =S(IJ
WRITE (6,4)
riRITE- (6,5) MIODELPR(N)
.'ALL ITER (R0,XOY0,ZO,0X0,DY0,DZOES%ESYESZEi4R0R)
ZOD(N)=Z3
'10 23 I=1,JJ

2Z' RI l=QTS()-y22* Il-X*( Y0*-tE(I) + ZO*F(I)) +XJ*'i
ZYO**2 + ZO**2)
4RITE (694)
WRITE (6,5) MOI00LgPR(N)
03 3C I=19JJ

33 OIFF (I) =RID (I) - RO
WRITE (6b1.C )
00 32 I=1,JJ

32 RF (1149I) = RIP (I)

)0 35 K=1,JD
L1IP1(K)
I=IP2 (K)
00 34 I1,JJ

34 )-F(I) =RF(MI) - RF(L,I) + (Z03(M)-Z0D(L))*COS(PHI(I))
WRITE (6t.4)
4RITE (6,0) PR(L),PR(M)
WRITE (6,7)

35 4RITE (5,2) (IOErF(I),I=1,Jj)
r~~
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DEFINITION OF ADDITIONAL VAFIABLES IN SLBROUTINc. REDUCE

BAD = O1FrE2rENcEI- 'ETWEE--N TWO LARGEST OUDT READ)INGS
DELR = DRIFT IN GLO R~EADINGS
KI FLAG FOR FIRST GLO REACING
OLDR =OLJ GLO RADIUS
RD D COT R-EADING
sum SUM OF TWO LARGEST DO(T READINGS
S. ITNEDF~E NFGR .
52L DISTANCE DEFINED IN FIGURE A4&5

XEWR = NEW GLO RADIUS

SUBROUTINE REDJCE (PRMODELJJN)

4 =:RMA (*4

5FORalATC1X,* THIS IS THE *,A4, t 4:ODEL9 H RSUEI
i* Psi*,//)

7 FORMAT (lX,13,2XFf0.2,1Xv *TECN-THOUSANOTIS OF AN I1NCH -------8AO) &:.
iADItJG*9/)
READ ( 592) MODEL, Si,52,PR(N)
WRITE (694)
O'RIra (695) MODELPR(N)
<I = a z DELR =C
)O 95 I11,JJ

VC READ ( 5,3) K9 (RD(J),J=i,3)
WRITE(6,3) K, CR(J),J=1,3)
3JM =RJ(I)+RDJC2)+RD(3)-A.9INI(RD(1),RD(2),RD(3))
PAK) =SUM/50JOO. - DELR #.Si + S2
BAD = -,ASAIX(D4)R()R() SUM/2,) /2.5
IF (BAO.GTo2o) WRITE (697) KvBAJ

9' IF (K-2EC) 9591,95
9 1 IF (KI) 92,9,93
92 JLGR RK

<I = I
3 TO 1'

93 XEWP" R'.K)
OrELR XEWR -OLOR + ELR
OLOR XEWR

9~3 ^#ON T IN UE
RETURN

END
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DEFINITION OF ADDITIONAL VARIABLES I A-i~UT1 hE

FACT = STLMPLIFICAT1ON FACTOR IN zOJAT10fiS A.6 THROIGHA.
AND EQUAL TO (RO-RIP(I))/RP?(I)

FSUMX = STORAGE LOCATION FOR SUM OF EGUATIrAN A*6
4FSUMY = STORAGE LCATION FOR SUM OF :EauATICNl4.

FSUMZ = STORAGE LOCATION FOR SUM OF E-QUATIOM '.8
ICNT = COUNTER ON NUMBER OF ITEiRATIOUS FOR CNE(N~O

S)LUT IONI
KX = CONVERG.EACE INDICATOR = 1. un CNVRtu OF ALL EQUATIOU~k
LX = INDICATIO'R TO BYPASS ERROR~ 30U;.0 CALCtJLr^%ICoNS L.X~c.PT

ON FIRST PASS
RA = TRIAL VALJE FOR RO
SLX = SLOPE OF SUMX VERSUS XO CURVE
SLY =SLOPE OF SUMY VERSUS YG CUJRIE
SLZ = SLOPE OF SUMZ VERSUS ZC CURVE
SUMX = NEW SUM14ATION OF EQUATION A,6
SUMXI = PREVIOUS SUM11ATION4 OF EQUATICN A,6
SUMY = NEW SUAMATION OF EQUATION 4.7
SUMYi = PREVIOUS SUMMATION OF EQUATIOJN Ao7
SUMZ r NEW SUMMATION CF EQUATION A*8
SUMZ1 = PREVIOUS SUMMATION OF EQUATION A*8
XOI = PREVIOUS VALUE OF XO
XX = FIXED POINT NOTATION FOR THE VARIAELE II
NDi = PREVIOJS VALUE OF YO
ZOl = PREVIOUS VALUE OF ZO

SUBR)UTI'IE ITEPS IRO,XOYO,?OCfO7DYOCZ3SX..S',rZ-,Zi<OR)

2 FORM~AT (7(2XF13.6) 916)
3 O-RMAT A.i ,iX, *ZO-COUNT =*,13)

6 :ORMAT (lXq*R3 *9F8*4,7X,*XO = *tF7q48Xs't'O =,7469Z
i,F7l.L.8X9*COU:'T *91,39/)
LX = i S KX 1 i XX =II
ICNT C qw RO = .~ SUMZ: = Ls Z S*J'1XI S. SJMY! = .
ZO ZO 3 Xoi XO s Y0l= YO
)3 5 I1,II
RIP(I)=SCRT(R(I)**2-2.*R(I)*(X*A(I)r YO*3(I) ZO*C(I)) + XJ*
iYO**P + ZO**2)

5 RO = RO +RID (I)/XX
0O 1c. I =iqII

rAC (RO-RIP(I),/RIPci1
SUE:XI SUMXi + FACT (.-CIAI)



Sjl,= SUNY1 FACT * (YO-RM4)8(t))26
i ZsumtiZ= SumZi +- FACT * (ZC-R(I)'*C(l)

-SUmX = SU!IXI
FSU(Y =SUIIY3
RA = RD
d1RITE (612) RA,XCIY0,ZOFSUFXFSU1iYFSuL'ZtIC

4T

14 ZO =ZO - NZO
30 TO 45

15 ZO = Z-0 + OZO
46 IF (SUflXls44,''--4s4 5

44 )X = 'o0 - D'A'O
30 TO 76

45 XO =XO + 0XO
76 lF (SUMYI)74974,75
74 Y'C = YO DYO

53 TO 16
75 YO 70Y DY0
Lb :0 00

sui~z = co S'UMX = e SUMY L=

KX = 1
30 18 I=ISI

RIP(I)=SO:TC<-(I)*224R(I)*(XO*A(I)+ YCV(I) 
ZO*C(I)) XO3*2

j10j*2 + ZO**2)

IF (IC T - i1)0) 23s2'5917
17 WRITE (693) ICNT

STOP
2^ 30 22 I !,II

rACTI SUO-IP(I)FACT *(XO I))

SUMY SU VY + FACT * (YO-F<(I)*A(I))

22 SUKZ =SUHZ + FACT * (ZO-R(I)*C(I))
FSUMIZ = SiJIZ
FSUtJX = SUMX
F3U-MY =SUMY

ICNT =ICNT +I.
WRITE (6v2) RAXOYO,ZO,FSUtXFSUYFSU'ZICNT
IF (ZO-Z01) 24923924

24 SLZ =(SU4Z - SUMZI) / (ZO - Z01)

23 IF (XO-X31) 541,53954
5-4 SLX =(SUHX - SUMXi) / (XO - XOI)
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53 IF '(Y9-Y2J 84983934
843 ~L L (S L::4 - SUMYl) /(YO -YOI)

83 33 153 (25s27) sLX
25 ESZ = ABSSLZ)*ERROR

ESX = ASS(SLX)'E-RROR
ESY = ABS(SLY)*EfRROR
LX =2

27 1F (A BSC(r-S U M ESZ )57,157928
28 <X2

Zol =ZO

30t:Zl = SUMZ
ZO = ZO - SUMlZ/SLZ

57 IF Ct63(FSU.4X)-ESX )8718?grl;-
58 KX =2

43 X

SUMX~(1 SUM
X= X3- SU.9X/SLX

87 IF (43SCFSUMYI-ESY )26926t8
88 <XC 2

Yoi Yo
3J~f1 SUMY
YO = YO - SUMY/SLY

26 SO T3 (29,15), KX
29 WRITE (U't') RAXOYOZOICNT

RE U R-IN

ENO
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